a35b6824f3a0bdb68c5aef599c0f17562689970e Add assertion to randrange that input is not 0 (Jeremy Rubin)
Pull request description:
From the comment in randrange, their is an implicit argument that randrange cannot accept an argument of 0. If the argument is 0, then we have to return {}, which is not possible in a uint64_t.
The current code takes a very interesting approach, which is to return [0..std::numeric_limits<uint64_t>]. This can cause all sorts of fun problems, like allocating a lot of memory, accessing random memory (maybe with your private keys), and crashing the computer entirely.
This gives us three choices of how to make it "safe":
1) return Optional<uint64_t>
2) Change the return type to [0..range]
3) Return 0 if 0
4) Assert(range)
So which solution is best?
1) seems a bit overkill, as it makes any code using randrange worse.
2) Changing the return type as in 2 could be acceptable, but it imposes the potential overflow checking on the caller (which is what we want).
3) An interesting option -- effective makes the return type in {0} U [0..range]. But this is a bad choice, because it leads to code like `vec[randrange(vec.size())]`, which is incorrect for an empty vector. Null set should mean null set.
4) Assert(range) stands out as the best mitigation for now, with perhaps a future change to solution 2. It prevents the error from propagating at the earliest possible time, so the program crashes cleanly rather than by freezing the computer or accessing random memory.
ACKs for top commit:
instagibbs:
Seems reasonable for now, ACK a35b6824f3
laanwj:
ACK a35b6824f3a0bdb68c5aef599c0f17562689970e
promag:
ACK a35b6824f3a0bdb68c5aef599c0f17562689970e.
Tree-SHA512: 8fc626cde4b04b918100cb7af28753f25ec697bd077ce0e0c640be0357626322aeea233e3c8fd964ba1564b0fda830b7f5188310ebbb119c113513a4b89952dc
Bitcoin Core integration/staging tree
What is Bitcoin?
Bitcoin is an experimental digital currency that enables instant payments to anyone, anywhere in the world. Bitcoin uses peer-to-peer technology to operate with no central authority: managing transactions and issuing money are carried out collectively by the network. Bitcoin Core is the name of open source software which enables the use of this currency.
For more information, as well as an immediately useable, binary version of the Bitcoin Core software, see https://bitcoincore.org/en/download/, or read the original whitepaper.
License
Bitcoin Core is released under the terms of the MIT license. See COPYING for more information or see https://opensource.org/licenses/MIT.
Development Process
The master branch is regularly built and tested, but is not guaranteed to be
completely stable. Tags are created
regularly to indicate new official, stable release versions of Bitcoin Core.
The contribution workflow is described in CONTRIBUTING.md and useful hints for developers can be found in doc/developer-notes.md.
Testing
Testing and code review is the bottleneck for development; we get more pull requests than we can review and test on short notice. Please be patient and help out by testing other people's pull requests, and remember this is a security-critical project where any mistake might cost people lots of money.
Automated Testing
Developers are strongly encouraged to write unit tests for new code, and to
submit new unit tests for old code. Unit tests can be compiled and run
(assuming they weren't disabled in configure) with: make check. Further details on running
and extending unit tests can be found in /src/test/README.md.
There are also regression and integration tests, written
in Python, that are run automatically on the build server.
These tests can be run (if the test dependencies are installed) with: test/functional/test_runner.py
The Travis CI system makes sure that every pull request is built for Windows, Linux, and macOS, and that unit/sanity tests are run automatically.
Manual Quality Assurance (QA) Testing
Changes should be tested by somebody other than the developer who wrote the code. This is especially important for large or high-risk changes. It is useful to add a test plan to the pull request description if testing the changes is not straightforward.
Translations
Changes to translations as well as new translations can be submitted to Bitcoin Core's Transifex page.
Translations are periodically pulled from Transifex and merged into the git repository. See the translation process for details on how this works.
Important: We do not accept translation changes as GitHub pull requests because the next pull from Transifex would automatically overwrite them again.
Translators should also subscribe to the mailing list.