MWEB: Adding dependencies
This commit is contained in:
parent
c87e3f7448
commit
e735822f3d
@ -190,6 +190,7 @@ LCOV_FILTER_PATTERN = \
|
||||
-p "src/bench/" \
|
||||
-p "src/univalue" \
|
||||
-p "src/crypto/ctaes" \
|
||||
-p "src/crypto/blake3" \
|
||||
-p "src/secp256k1-zkp" \
|
||||
-p "depends"
|
||||
|
||||
|
||||
@ -1414,6 +1414,9 @@ if test "x$use_zmq" = xyes; then
|
||||
esac
|
||||
fi
|
||||
|
||||
|
||||
AC_CHECK_LIB([fmt],[main],MWEB_LIBS=-lfmt,AC_MSG_ERROR(libfmt missing))
|
||||
|
||||
dnl univalue check
|
||||
|
||||
need_bundled_univalue=yes
|
||||
|
||||
5
depends/cmake/mingw-w64-x86_64.cmake
Normal file
5
depends/cmake/mingw-w64-x86_64.cmake
Normal file
@ -0,0 +1,5 @@
|
||||
set(CMAKE_SYSTEM_NAME Windows)
|
||||
set(TOOLCHAIN_PREFIX x86_64-w64-mingw32)
|
||||
|
||||
set(CMAKE_C_COMPILER ${TOOLCHAIN_PREFIX}-gcc-posix)
|
||||
set(CMAKE_CXX_COMPILER ${TOOLCHAIN_PREFIX}-g++-posix)
|
||||
21
depends/packages/libfmt.mk
Normal file
21
depends/packages/libfmt.mk
Normal file
@ -0,0 +1,21 @@
|
||||
package=libfmt
|
||||
$(package)_version=7.1.3
|
||||
$(package)_download_path=https://github.com/fmtlib/fmt/archive/
|
||||
$(package)_file_name=$($(package)_version).tar.gz
|
||||
$(package)_sha256_hash=5cae7072042b3043e12d53d50ef404bbb76949dad1de368d7f993a15c8c05ecc
|
||||
|
||||
define $(package)_set_vars
|
||||
$(package)_config_opts_x86_64_mingw32=-DCMAKE_TOOLCHAIN_FILE=$(BASEDIR)/cmake/mingw-w64-x86_64.cmake
|
||||
endef
|
||||
|
||||
define $(package)_config_cmds
|
||||
cmake -DCMAKE_POSITION_INDEPENDENT_CODE:BOOL=true $($(package)_config_opts) .
|
||||
endef
|
||||
|
||||
define $(package)_build_cmds
|
||||
$(MAKE) && \
|
||||
mkdir -p $($(package)_staging_dir)$(host_prefix)/include && \
|
||||
cp -a include/* $($(package)_staging_dir)$(host_prefix)/include/ && \
|
||||
mkdir -p $($(package)_staging_dir)$(host_prefix)/lib && \
|
||||
cp -a libfmt.a $($(package)_staging_dir)$(host_prefix)/lib/
|
||||
endef
|
||||
@ -1,4 +1,4 @@
|
||||
packages:=boost openssl libevent
|
||||
packages:=boost openssl libevent libfmt
|
||||
|
||||
qt_packages = zlib
|
||||
|
||||
|
||||
3
src/crypto/blake3/.gitignore
vendored
Normal file
3
src/crypto/blake3/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
blake3
|
||||
example
|
||||
*.o
|
||||
78
src/crypto/blake3/Makefile.testing
Normal file
78
src/crypto/blake3/Makefile.testing
Normal file
@ -0,0 +1,78 @@
|
||||
# This Makefile is only for testing. C callers should follow the instructions
|
||||
# in ./README.md to incorporate these C files into their existing build.
|
||||
|
||||
NAME=blake3
|
||||
CC=gcc
|
||||
CFLAGS=-O3 -Wall -Wextra -std=c11 -pedantic -fstack-protector-strong -D_FORTIFY_SOURCE=2 -fPIE -fvisibility=hidden
|
||||
LDFLAGS=-pie -Wl,-z,relro,-z,now
|
||||
TARGETS=
|
||||
ASM_TARGETS=
|
||||
EXTRAFLAGS=-Wa,--noexecstack
|
||||
|
||||
ifdef BLAKE3_NO_SSE2
|
||||
EXTRAFLAGS += -DBLAKE3_NO_SSE2
|
||||
else
|
||||
TARGETS += blake3_sse2.o
|
||||
ASM_TARGETS += blake3_sse2_x86-64_unix.S
|
||||
endif
|
||||
|
||||
ifdef BLAKE3_NO_SSE41
|
||||
EXTRAFLAGS += -DBLAKE3_NO_SSE41
|
||||
else
|
||||
TARGETS += blake3_sse41.o
|
||||
ASM_TARGETS += blake3_sse41_x86-64_unix.S
|
||||
endif
|
||||
|
||||
ifdef BLAKE3_NO_AVX2
|
||||
EXTRAFLAGS += -DBLAKE3_NO_AVX2
|
||||
else
|
||||
TARGETS += blake3_avx2.o
|
||||
ASM_TARGETS += blake3_avx2_x86-64_unix.S
|
||||
endif
|
||||
|
||||
ifdef BLAKE3_NO_AVX512
|
||||
EXTRAFLAGS += -DBLAKE3_NO_AVX512
|
||||
else
|
||||
TARGETS += blake3_avx512.o
|
||||
ASM_TARGETS += blake3_avx512_x86-64_unix.S
|
||||
endif
|
||||
|
||||
ifdef BLAKE3_USE_NEON
|
||||
EXTRAFLAGS += -DBLAKE3_USE_NEON
|
||||
TARGETS += blake3_neon.o
|
||||
endif
|
||||
|
||||
all: blake3.c blake3_dispatch.c blake3_portable.c main.c $(TARGETS)
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) $^ -o $(NAME) $(LDFLAGS)
|
||||
|
||||
blake3_sse2.o: blake3_sse2.c
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) -c $^ -o $@ -msse2
|
||||
|
||||
blake3_sse41.o: blake3_sse41.c
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) -c $^ -o $@ -msse4.1
|
||||
|
||||
blake3_avx2.o: blake3_avx2.c
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) -c $^ -o $@ -mavx2
|
||||
|
||||
blake3_avx512.o: blake3_avx512.c
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) -c $^ -o $@ -mavx512f -mavx512vl
|
||||
|
||||
blake3_neon.o: blake3_neon.c
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) -c $^ -o $@
|
||||
|
||||
test: CFLAGS += -DBLAKE3_TESTING -fsanitize=address,undefined
|
||||
test: all
|
||||
./test.py
|
||||
|
||||
asm: blake3.c blake3_dispatch.c blake3_portable.c main.c $(ASM_TARGETS)
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) $^ -o $(NAME) $(LDFLAGS)
|
||||
|
||||
test_asm: CFLAGS += -DBLAKE3_TESTING -fsanitize=address,undefined
|
||||
test_asm: asm
|
||||
./test.py
|
||||
|
||||
example: example.c blake3.c blake3_dispatch.c blake3_portable.c $(ASM_TARGETS)
|
||||
$(CC) $(CFLAGS) $(EXTRAFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
clean:
|
||||
rm -f $(NAME) *.o
|
||||
282
src/crypto/blake3/README.md
Normal file
282
src/crypto/blake3/README.md
Normal file
@ -0,0 +1,282 @@
|
||||
The official C implementation of BLAKE3.
|
||||
|
||||
# Example
|
||||
|
||||
An example program that hashes bytes from standard input and prints the
|
||||
result:
|
||||
|
||||
```c
|
||||
#include "blake3.h"
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
|
||||
int main() {
|
||||
// Initialize the hasher.
|
||||
blake3_hasher hasher;
|
||||
blake3_hasher_init(&hasher);
|
||||
|
||||
// Read input bytes from stdin.
|
||||
unsigned char buf[65536];
|
||||
ssize_t n;
|
||||
while ((n = read(STDIN_FILENO, buf, sizeof(buf))) > 0) {
|
||||
blake3_hasher_update(&hasher, buf, n);
|
||||
}
|
||||
|
||||
// Finalize the hash. BLAKE3_OUT_LEN is the default output length, 32 bytes.
|
||||
uint8_t output[BLAKE3_OUT_LEN];
|
||||
blake3_hasher_finalize(&hasher, output, BLAKE3_OUT_LEN);
|
||||
|
||||
// Print the hash as hexadecimal.
|
||||
for (size_t i = 0; i < BLAKE3_OUT_LEN; i++) {
|
||||
printf("%02x", output[i]);
|
||||
}
|
||||
printf("\n");
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
The code above is included in this directory as `example.c`. If you're
|
||||
on x86\_64 with a Unix-like OS, you can compile a working binary like
|
||||
this:
|
||||
|
||||
```bash
|
||||
gcc -O3 -o example example.c blake3.c blake3_dispatch.c blake3_portable.c \
|
||||
blake3_sse2_x86-64_unix.S blake3_sse41_x86-64_unix.S blake3_avx2_x86-64_unix.S \
|
||||
blake3_avx512_x86-64_unix.S
|
||||
```
|
||||
|
||||
# API
|
||||
|
||||
## The Struct
|
||||
|
||||
```c
|
||||
typedef struct {
|
||||
// private fields
|
||||
} blake3_hasher;
|
||||
```
|
||||
|
||||
An incremental BLAKE3 hashing state, which can accept any number of
|
||||
updates. This implementation doesn't allocate any heap memory, but
|
||||
`sizeof(blake3_hasher)` itself is relatively large, currently 1912 bytes
|
||||
on x86-64. This size can be reduced by restricting the maximum input
|
||||
length, as described in Section 5.4 of [the BLAKE3
|
||||
spec](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf),
|
||||
but this implementation doesn't currently support that strategy.
|
||||
|
||||
## Common API Functions
|
||||
|
||||
```c
|
||||
void blake3_hasher_init(
|
||||
blake3_hasher *self);
|
||||
```
|
||||
|
||||
Initialize a `blake3_hasher` in the default hashing mode.
|
||||
|
||||
---
|
||||
|
||||
```c
|
||||
void blake3_hasher_update(
|
||||
blake3_hasher *self,
|
||||
const void *input,
|
||||
size_t input_len);
|
||||
```
|
||||
|
||||
Add input to the hasher. This can be called any number of times.
|
||||
|
||||
---
|
||||
|
||||
```c
|
||||
void blake3_hasher_finalize(
|
||||
const blake3_hasher *self,
|
||||
uint8_t *out,
|
||||
size_t out_len);
|
||||
```
|
||||
|
||||
Finalize the hasher and return an output of any length, given in bytes.
|
||||
This doesn't modify the hasher itself, and it's possible to finalize
|
||||
again after adding more input. The constant `BLAKE3_OUT_LEN` provides
|
||||
the default output length, 32 bytes, which is recommended for most
|
||||
callers.
|
||||
|
||||
Outputs shorter than the default length of 32 bytes (256 bits) provide
|
||||
less security. An N-bit BLAKE3 output is intended to provide N bits of
|
||||
first and second preimage resistance and N/2 bits of collision
|
||||
resistance, for any N up to 256. Longer outputs don't provide any
|
||||
additional security.
|
||||
|
||||
Shorter BLAKE3 outputs are prefixes of longer ones. Explicitly
|
||||
requesting a short output is equivalent to truncating the default-length
|
||||
output. (Note that this is different between BLAKE2 and BLAKE3.)
|
||||
|
||||
## Less Common API Functions
|
||||
|
||||
```c
|
||||
void blake3_hasher_init_keyed(
|
||||
blake3_hasher *self,
|
||||
const uint8_t key[BLAKE3_KEY_LEN]);
|
||||
```
|
||||
|
||||
Initialize a `blake3_hasher` in the keyed hashing mode. The key must be
|
||||
exactly 32 bytes.
|
||||
|
||||
---
|
||||
|
||||
```c
|
||||
void blake3_hasher_init_derive_key(
|
||||
blake3_hasher *self,
|
||||
const char *context);
|
||||
```
|
||||
|
||||
Initialize a `blake3_hasher` in the key derivation mode. The context
|
||||
string is given as an initialization parameter, and afterwards input key
|
||||
material should be given with `blake3_hasher_update`. The context string
|
||||
is a null-terminated C string which should be **hardcoded, globally
|
||||
unique, and application-specific**. The context string should not
|
||||
include any dynamic input like salts, nonces, or identifiers read from a
|
||||
database at runtime. A good default format for the context string is
|
||||
`"[application] [commit timestamp] [purpose]"`, e.g., `"example.com
|
||||
2019-12-25 16:18:03 session tokens v1"`.
|
||||
|
||||
This function is intended for application code written in C. For
|
||||
language bindings, see `blake3_hasher_init_derive_key_raw` below.
|
||||
|
||||
---
|
||||
|
||||
```c
|
||||
void blake3_hasher_init_derive_key_raw(
|
||||
blake3_hasher *self,
|
||||
const void *context,
|
||||
size_t context_len);
|
||||
```
|
||||
|
||||
As `blake3_hasher_init_derive_key` above, except that the context string
|
||||
is given as a pointer to an array of arbitrary bytes with a provided
|
||||
length. This is intended for writing language bindings, where C string
|
||||
conversion would add unnecessary overhead and new error cases. Unicode
|
||||
strings should be encoded as UTF-8.
|
||||
|
||||
Application code in C should prefer `blake3_hasher_init_derive_key`,
|
||||
which takes the context as a C string. If you need to use arbitrary
|
||||
bytes as a context string in application code, consider whether you're
|
||||
violating the requirement that context strings should be hardcoded.
|
||||
|
||||
---
|
||||
|
||||
```c
|
||||
void blake3_hasher_finalize_seek(
|
||||
const blake3_hasher *self,
|
||||
uint64_t seek,
|
||||
uint8_t *out,
|
||||
size_t out_len);
|
||||
```
|
||||
|
||||
The same as `blake3_hasher_finalize`, but with an additional `seek`
|
||||
parameter for the starting byte position in the output stream. To
|
||||
efficiently stream a large output without allocating memory, call this
|
||||
function in a loop, incrementing `seek` by the output length each time.
|
||||
|
||||
# Building
|
||||
|
||||
This implementation is just C and assembly files. It doesn't include a
|
||||
public-facing build system. (The `Makefile` in this directory is only
|
||||
for testing.) Instead, the intention is that you can include these files
|
||||
in whatever build system you're already using. This section describes
|
||||
the commands your build system should execute, or which you can execute
|
||||
by hand. Note that these steps may change in future versions.
|
||||
|
||||
## x86
|
||||
|
||||
Dynamic dispatch is enabled by default on x86. The implementation will
|
||||
query the CPU at runtime to detect SIMD support, and it will use the
|
||||
widest instruction set available. By default, `blake3_dispatch.c`
|
||||
expects to be linked with code for five different instruction sets:
|
||||
portable C, SSE2, SSE4.1, AVX2, and AVX-512.
|
||||
|
||||
For each of the x86 SIMD instruction sets, four versions are available:
|
||||
three flavors of assembly (Unix, Windows MSVC, and Windows GNU) and one
|
||||
version using C intrinsics. The assembly versions are generally
|
||||
preferred. They perform better, they perform more consistently across
|
||||
different compilers, and they build more quickly. On the other hand, the
|
||||
assembly versions are x86\_64-only, and you need to select the right
|
||||
flavor for your target platform.
|
||||
|
||||
Here's an example of building a shared library on x86\_64 Linux using
|
||||
the assembly implementations:
|
||||
|
||||
```bash
|
||||
gcc -shared -O3 -o libblake3.so blake3.c blake3_dispatch.c blake3_portable.c \
|
||||
blake3_sse2_x86-64_unix.S blake3_sse41_x86-64_unix.S blake3_avx2_x86-64_unix.S \
|
||||
blake3_avx512_x86-64_unix.S
|
||||
```
|
||||
|
||||
When building the intrinsics-based implementations, you need to build
|
||||
each implementation separately, with the corresponding instruction set
|
||||
explicitly enabled in the compiler. Here's the same shared library using
|
||||
the intrinsics-based implementations:
|
||||
|
||||
```bash
|
||||
gcc -c -fPIC -O3 -msse2 blake3_sse2.c -o blake3_sse2.o
|
||||
gcc -c -fPIC -O3 -msse4.1 blake3_sse41.c -o blake3_sse41.o
|
||||
gcc -c -fPIC -O3 -mavx2 blake3_avx2.c -o blake3_avx2.o
|
||||
gcc -c -fPIC -O3 -mavx512f -mavx512vl blake3_avx512.c -o blake3_avx512.o
|
||||
gcc -shared -O3 -o libblake3.so blake3.c blake3_dispatch.c blake3_portable.c \
|
||||
blake3_avx2.o blake3_avx512.o blake3_sse41.o blake3_sse2.o
|
||||
```
|
||||
|
||||
Note above that building `blake3_avx512.c` requires both `-mavx512f` and
|
||||
`-mavx512vl` under GCC and Clang. Under MSVC, the single `/arch:AVX512`
|
||||
flag is sufficient. The MSVC equivalent of `-mavx2` is `/arch:AVX2`.
|
||||
MSVC enables SSE2 and SSE4.1 by defaut, and it doesn't have a
|
||||
corresponding flag.
|
||||
|
||||
If you want to omit SIMD code entirely, you need to explicitly disable
|
||||
each instruction set. Here's an example of building a shared library on
|
||||
x86 with only portable code:
|
||||
|
||||
```bash
|
||||
gcc -shared -O3 -o libblake3.so -DBLAKE3_NO_SSE2 -DBLAKE3_NO_SSE41 -DBLAKE3_NO_AVX2 \
|
||||
-DBLAKE3_NO_AVX512 blake3.c blake3_dispatch.c blake3_portable.c
|
||||
```
|
||||
|
||||
## ARM NEON
|
||||
|
||||
The NEON implementation is not enabled by default on ARM, since not all
|
||||
ARM targets support it. To enable it, set `BLAKE3_USE_NEON=1`. Here's an
|
||||
example of building a shared library on ARM Linux with NEON support:
|
||||
|
||||
```bash
|
||||
gcc -shared -O3 -o libblake3.so -DBLAKE3_USE_NEON blake3.c blake3_dispatch.c \
|
||||
blake3_portable.c blake3_neon.c
|
||||
```
|
||||
|
||||
Note that on some targets (ARMv7 in particular), extra flags may be
|
||||
required to activate NEON support in the compiler. If you see an error
|
||||
like...
|
||||
|
||||
```
|
||||
/usr/lib/gcc/armv7l-unknown-linux-gnueabihf/9.2.0/include/arm_neon.h:635:1: error: inlining failed
|
||||
in call to always_inline ‘vaddq_u32’: target specific option mismatch
|
||||
```
|
||||
|
||||
...then you may need to add something like `-mfpu=neon-vfpv4
|
||||
-mfloat-abi=hard`.
|
||||
|
||||
## Other Platforms
|
||||
|
||||
The portable implementation should work on most other architectures. For
|
||||
example:
|
||||
|
||||
```bash
|
||||
gcc -shared -O3 -o libblake3.so blake3.c blake3_dispatch.c blake3_portable.c
|
||||
```
|
||||
|
||||
# Multithreading
|
||||
|
||||
Unlike the Rust implementation, the C implementation doesn't currently support
|
||||
multithreading. A future version of this library could add support by taking an
|
||||
optional dependency on OpenMP or similar. Alternatively, we could expose a
|
||||
lower-level API to allow callers to implement concurrency themselves. The
|
||||
former would be more convenient and less error-prone, but the latter would give
|
||||
callers the maximum possible amount of control. The best choice here depends on
|
||||
the specific use case, so if you have a use case for multithreaded hashing in
|
||||
C, please file a GitHub issue and let us know.
|
||||
605
src/crypto/blake3/blake3.c
Normal file
605
src/crypto/blake3/blake3.c
Normal file
@ -0,0 +1,605 @@
|
||||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "blake3.h"
|
||||
#include "blake3_impl.h"
|
||||
|
||||
const char *blake3_version(void) { return BLAKE3_VERSION_STRING; }
|
||||
|
||||
INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8],
|
||||
uint8_t flags) {
|
||||
memcpy(self->cv, key, BLAKE3_KEY_LEN);
|
||||
self->chunk_counter = 0;
|
||||
memset(self->buf, 0, BLAKE3_BLOCK_LEN);
|
||||
self->buf_len = 0;
|
||||
self->blocks_compressed = 0;
|
||||
self->flags = flags;
|
||||
}
|
||||
|
||||
INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8],
|
||||
uint64_t chunk_counter) {
|
||||
memcpy(self->cv, key, BLAKE3_KEY_LEN);
|
||||
self->chunk_counter = chunk_counter;
|
||||
self->blocks_compressed = 0;
|
||||
memset(self->buf, 0, BLAKE3_BLOCK_LEN);
|
||||
self->buf_len = 0;
|
||||
}
|
||||
|
||||
INLINE size_t chunk_state_len(const blake3_chunk_state *self) {
|
||||
return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) +
|
||||
((size_t)self->buf_len);
|
||||
}
|
||||
|
||||
INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self,
|
||||
const uint8_t *input, size_t input_len) {
|
||||
size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len);
|
||||
if (take > input_len) {
|
||||
take = input_len;
|
||||
}
|
||||
uint8_t *dest = self->buf + ((size_t)self->buf_len);
|
||||
memcpy(dest, input, take);
|
||||
self->buf_len += (uint8_t)take;
|
||||
return take;
|
||||
}
|
||||
|
||||
INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) {
|
||||
if (self->blocks_compressed == 0) {
|
||||
return CHUNK_START;
|
||||
} else {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
uint32_t input_cv[8];
|
||||
uint64_t counter;
|
||||
uint8_t block[BLAKE3_BLOCK_LEN];
|
||||
uint8_t block_len;
|
||||
uint8_t flags;
|
||||
} output_t;
|
||||
|
||||
INLINE output_t make_output(const uint32_t input_cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
output_t ret;
|
||||
memcpy(ret.input_cv, input_cv, 32);
|
||||
memcpy(ret.block, block, BLAKE3_BLOCK_LEN);
|
||||
ret.block_len = block_len;
|
||||
ret.counter = counter;
|
||||
ret.flags = flags;
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Chaining values within a given chunk (specifically the compress_in_place
|
||||
// interface) are represented as words. This avoids unnecessary bytes<->words
|
||||
// conversion overhead in the portable implementation. However, the hash_many
|
||||
// interface handles both user input and parent node blocks, so it accepts
|
||||
// bytes. For that reason, chaining values in the CV stack are represented as
|
||||
// bytes.
|
||||
INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) {
|
||||
uint32_t cv_words[8];
|
||||
memcpy(cv_words, self->input_cv, 32);
|
||||
blake3_compress_in_place(cv_words, self->block, self->block_len,
|
||||
self->counter, self->flags);
|
||||
store_cv_words(cv, cv_words);
|
||||
}
|
||||
|
||||
INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out,
|
||||
size_t out_len) {
|
||||
uint64_t output_block_counter = seek / 64;
|
||||
size_t offset_within_block = seek % 64;
|
||||
uint8_t wide_buf[64];
|
||||
while (out_len > 0) {
|
||||
blake3_compress_xof(self->input_cv, self->block, self->block_len,
|
||||
output_block_counter, self->flags | ROOT, wide_buf);
|
||||
size_t available_bytes = 64 - offset_within_block;
|
||||
size_t memcpy_len;
|
||||
if (out_len > available_bytes) {
|
||||
memcpy_len = available_bytes;
|
||||
} else {
|
||||
memcpy_len = out_len;
|
||||
}
|
||||
memcpy(out, wide_buf + offset_within_block, memcpy_len);
|
||||
out += memcpy_len;
|
||||
out_len -= memcpy_len;
|
||||
output_block_counter += 1;
|
||||
offset_within_block = 0;
|
||||
}
|
||||
}
|
||||
|
||||
INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input,
|
||||
size_t input_len) {
|
||||
if (self->buf_len > 0) {
|
||||
size_t take = chunk_state_fill_buf(self, input, input_len);
|
||||
input += take;
|
||||
input_len -= take;
|
||||
if (input_len > 0) {
|
||||
blake3_compress_in_place(
|
||||
self->cv, self->buf, BLAKE3_BLOCK_LEN, self->chunk_counter,
|
||||
self->flags | chunk_state_maybe_start_flag(self));
|
||||
self->blocks_compressed += 1;
|
||||
self->buf_len = 0;
|
||||
memset(self->buf, 0, BLAKE3_BLOCK_LEN);
|
||||
}
|
||||
}
|
||||
|
||||
while (input_len > BLAKE3_BLOCK_LEN) {
|
||||
blake3_compress_in_place(self->cv, input, BLAKE3_BLOCK_LEN,
|
||||
self->chunk_counter,
|
||||
self->flags | chunk_state_maybe_start_flag(self));
|
||||
self->blocks_compressed += 1;
|
||||
input += BLAKE3_BLOCK_LEN;
|
||||
input_len -= BLAKE3_BLOCK_LEN;
|
||||
}
|
||||
|
||||
size_t take = chunk_state_fill_buf(self, input, input_len);
|
||||
input += take;
|
||||
input_len -= take;
|
||||
}
|
||||
|
||||
INLINE output_t chunk_state_output(const blake3_chunk_state *self) {
|
||||
uint8_t block_flags =
|
||||
self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END;
|
||||
return make_output(self->cv, self->buf, self->buf_len, self->chunk_counter,
|
||||
block_flags);
|
||||
}
|
||||
|
||||
INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
const uint32_t key[8], uint8_t flags) {
|
||||
return make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT);
|
||||
}
|
||||
|
||||
// Given some input larger than one chunk, return the number of bytes that
|
||||
// should go in the left subtree. This is the largest power-of-2 number of
|
||||
// chunks that leaves at least 1 byte for the right subtree.
|
||||
INLINE size_t left_len(size_t content_len) {
|
||||
// Subtract 1 to reserve at least one byte for the right side. content_len
|
||||
// should always be greater than BLAKE3_CHUNK_LEN.
|
||||
size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN;
|
||||
return round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN;
|
||||
}
|
||||
|
||||
// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time
|
||||
// on a single thread. Write out the chunk chaining values and return the
|
||||
// number of chunks hashed. These chunks are never the root and never empty;
|
||||
// those cases use a different codepath.
|
||||
INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len,
|
||||
const uint32_t key[8],
|
||||
uint64_t chunk_counter, uint8_t flags,
|
||||
uint8_t *out) {
|
||||
#if defined(BLAKE3_TESTING)
|
||||
assert(0 < input_len);
|
||||
assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN);
|
||||
#endif
|
||||
|
||||
const uint8_t *chunks_array[MAX_SIMD_DEGREE];
|
||||
size_t input_position = 0;
|
||||
size_t chunks_array_len = 0;
|
||||
while (input_len - input_position >= BLAKE3_CHUNK_LEN) {
|
||||
chunks_array[chunks_array_len] = &input[input_position];
|
||||
input_position += BLAKE3_CHUNK_LEN;
|
||||
chunks_array_len += 1;
|
||||
}
|
||||
|
||||
blake3_hash_many(chunks_array, chunks_array_len,
|
||||
BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, chunk_counter,
|
||||
true, flags, CHUNK_START, CHUNK_END, out);
|
||||
|
||||
// Hash the remaining partial chunk, if there is one. Note that the empty
|
||||
// chunk (meaning the empty message) is a different codepath.
|
||||
if (input_len > input_position) {
|
||||
uint64_t counter = chunk_counter + (uint64_t)chunks_array_len;
|
||||
blake3_chunk_state chunk_state;
|
||||
chunk_state_init(&chunk_state, key, flags);
|
||||
chunk_state.chunk_counter = counter;
|
||||
chunk_state_update(&chunk_state, &input[input_position],
|
||||
input_len - input_position);
|
||||
output_t output = chunk_state_output(&chunk_state);
|
||||
output_chaining_value(&output, &out[chunks_array_len * BLAKE3_OUT_LEN]);
|
||||
return chunks_array_len + 1;
|
||||
} else {
|
||||
return chunks_array_len;
|
||||
}
|
||||
}
|
||||
|
||||
// Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time
|
||||
// on a single thread. Write out the parent chaining values and return the
|
||||
// number of parents hashed. (If there's an odd input chaining value left over,
|
||||
// return it as an additional output.) These parents are never the root and
|
||||
// never empty; those cases use a different codepath.
|
||||
INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values,
|
||||
size_t num_chaining_values,
|
||||
const uint32_t key[8], uint8_t flags,
|
||||
uint8_t *out) {
|
||||
#if defined(BLAKE3_TESTING)
|
||||
assert(2 <= num_chaining_values);
|
||||
assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2);
|
||||
#endif
|
||||
|
||||
const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2];
|
||||
size_t parents_array_len = 0;
|
||||
while (num_chaining_values - (2 * parents_array_len) >= 2) {
|
||||
parents_array[parents_array_len] =
|
||||
&child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN];
|
||||
parents_array_len += 1;
|
||||
}
|
||||
|
||||
blake3_hash_many(parents_array, parents_array_len, 1, key,
|
||||
0, // Parents always use counter 0.
|
||||
false, flags | PARENT,
|
||||
0, // Parents have no start flags.
|
||||
0, // Parents have no end flags.
|
||||
out);
|
||||
|
||||
// If there's an odd child left over, it becomes an output.
|
||||
if (num_chaining_values > 2 * parents_array_len) {
|
||||
memcpy(&out[parents_array_len * BLAKE3_OUT_LEN],
|
||||
&child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN],
|
||||
BLAKE3_OUT_LEN);
|
||||
return parents_array_len + 1;
|
||||
} else {
|
||||
return parents_array_len;
|
||||
}
|
||||
}
|
||||
|
||||
// The wide helper function returns (writes out) an array of chaining values
|
||||
// and returns the length of that array. The number of chaining values returned
|
||||
// is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer,
|
||||
// if the input is shorter than that many chunks. The reason for maintaining a
|
||||
// wide array of chaining values going back up the tree, is to allow the
|
||||
// implementation to hash as many parents in parallel as possible.
|
||||
//
|
||||
// As a special case when the SIMD degree is 1, this function will still return
|
||||
// at least 2 outputs. This guarantees that this function doesn't perform the
|
||||
// root compression. (If it did, it would use the wrong flags, and also we
|
||||
// wouldn't be able to implement exendable ouput.) Note that this function is
|
||||
// not used when the whole input is only 1 chunk long; that's a different
|
||||
// codepath.
|
||||
//
|
||||
// Why not just have the caller split the input on the first update(), instead
|
||||
// of implementing this special rule? Because we don't want to limit SIMD or
|
||||
// multi-threading parallelism for that update().
|
||||
static size_t blake3_compress_subtree_wide(const uint8_t *input,
|
||||
size_t input_len,
|
||||
const uint32_t key[8],
|
||||
uint64_t chunk_counter,
|
||||
uint8_t flags, uint8_t *out) {
|
||||
// Note that the single chunk case does *not* bump the SIMD degree up to 2
|
||||
// when it is 1. If this implementation adds multi-threading in the future,
|
||||
// this gives us the option of multi-threading even the 2-chunk case, which
|
||||
// can help performance on smaller platforms.
|
||||
if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) {
|
||||
return compress_chunks_parallel(input, input_len, key, chunk_counter, flags,
|
||||
out);
|
||||
}
|
||||
|
||||
// With more than simd_degree chunks, we need to recurse. Start by dividing
|
||||
// the input into left and right subtrees. (Note that this is only optimal
|
||||
// as long as the SIMD degree is a power of 2. If we ever get a SIMD degree
|
||||
// of 3 or something, we'll need a more complicated strategy.)
|
||||
size_t left_input_len = left_len(input_len);
|
||||
size_t right_input_len = input_len - left_input_len;
|
||||
const uint8_t *right_input = &input[left_input_len];
|
||||
uint64_t right_chunk_counter =
|
||||
chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN);
|
||||
|
||||
// Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to
|
||||
// account for the special case of returning 2 outputs when the SIMD degree
|
||||
// is 1.
|
||||
uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
|
||||
size_t degree = blake3_simd_degree();
|
||||
if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) {
|
||||
// The special case: We always use a degree of at least two, to make
|
||||
// sure there are two outputs. Except, as noted above, at the chunk
|
||||
// level, where we allow degree=1. (Note that the 1-chunk-input case is
|
||||
// a different codepath.)
|
||||
degree = 2;
|
||||
}
|
||||
uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN];
|
||||
|
||||
// Recurse! If this implementation adds multi-threading support in the
|
||||
// future, this is where it will go.
|
||||
size_t left_n = blake3_compress_subtree_wide(input, left_input_len, key,
|
||||
chunk_counter, flags, cv_array);
|
||||
size_t right_n = blake3_compress_subtree_wide(
|
||||
right_input, right_input_len, key, right_chunk_counter, flags, right_cvs);
|
||||
|
||||
// The special case again. If simd_degree=1, then we'll have left_n=1 and
|
||||
// right_n=1. Rather than compressing them into a single output, return
|
||||
// them directly, to make sure we always have at least two outputs.
|
||||
if (left_n == 1) {
|
||||
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
|
||||
return 2;
|
||||
}
|
||||
|
||||
// Otherwise, do one layer of parent node compression.
|
||||
size_t num_chaining_values = left_n + right_n;
|
||||
return compress_parents_parallel(cv_array, num_chaining_values, key, flags,
|
||||
out);
|
||||
}
|
||||
|
||||
// Hash a subtree with compress_subtree_wide(), and then condense the resulting
|
||||
// list of chaining values down to a single parent node. Don't compress that
|
||||
// last parent node, however. Instead, return its message bytes (the
|
||||
// concatenated chaining values of its children). This is necessary when the
|
||||
// first call to update() supplies a complete subtree, because the topmost
|
||||
// parent node of that subtree could end up being the root. It's also necessary
|
||||
// for extended output in the general case.
|
||||
//
|
||||
// As with compress_subtree_wide(), this function is not used on inputs of 1
|
||||
// chunk or less. That's a different codepath.
|
||||
INLINE void compress_subtree_to_parent_node(
|
||||
const uint8_t *input, size_t input_len, const uint32_t key[8],
|
||||
uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) {
|
||||
#if defined(BLAKE3_TESTING)
|
||||
assert(input_len > BLAKE3_CHUNK_LEN);
|
||||
#endif
|
||||
|
||||
uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN];
|
||||
size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key,
|
||||
chunk_counter, flags, cv_array);
|
||||
|
||||
// If MAX_SIMD_DEGREE is greater than 2 and there's enough input,
|
||||
// compress_subtree_wide() returns more than 2 chaining values. Condense
|
||||
// them into 2 by forming parent nodes repeatedly.
|
||||
uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2];
|
||||
while (num_cvs > 2) {
|
||||
num_cvs =
|
||||
compress_parents_parallel(cv_array, num_cvs, key, flags, out_array);
|
||||
memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN);
|
||||
}
|
||||
memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN);
|
||||
}
|
||||
|
||||
INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8],
|
||||
uint8_t flags) {
|
||||
memcpy(self->key, key, BLAKE3_KEY_LEN);
|
||||
chunk_state_init(&self->chunk, key, flags);
|
||||
self->cv_stack_len = 0;
|
||||
}
|
||||
|
||||
void blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, IV, 0); }
|
||||
|
||||
void blake3_hasher_init_keyed(blake3_hasher *self,
|
||||
const uint8_t key[BLAKE3_KEY_LEN]) {
|
||||
uint32_t key_words[8];
|
||||
load_key_words(key, key_words);
|
||||
hasher_init_base(self, key_words, KEYED_HASH);
|
||||
}
|
||||
|
||||
void blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context,
|
||||
size_t context_len) {
|
||||
blake3_hasher context_hasher;
|
||||
hasher_init_base(&context_hasher, IV, DERIVE_KEY_CONTEXT);
|
||||
blake3_hasher_update(&context_hasher, context, context_len);
|
||||
uint8_t context_key[BLAKE3_KEY_LEN];
|
||||
blake3_hasher_finalize(&context_hasher, context_key, BLAKE3_KEY_LEN);
|
||||
uint32_t context_key_words[8];
|
||||
load_key_words(context_key, context_key_words);
|
||||
hasher_init_base(self, context_key_words, DERIVE_KEY_MATERIAL);
|
||||
}
|
||||
|
||||
void blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) {
|
||||
blake3_hasher_init_derive_key_raw(self, context, strlen(context));
|
||||
}
|
||||
|
||||
// As described in hasher_push_cv() below, we do "lazy merging", delaying
|
||||
// merges until right before the next CV is about to be added. This is
|
||||
// different from the reference implementation. Another difference is that we
|
||||
// aren't always merging 1 chunk at a time. Instead, each CV might represent
|
||||
// any power-of-two number of chunks, as long as the smaller-above-larger stack
|
||||
// order is maintained. Instead of the "count the trailing 0-bits" algorithm
|
||||
// described in the spec, we use a "count the total number of 1-bits" variant
|
||||
// that doesn't require us to retain the subtree size of the CV on top of the
|
||||
// stack. The principle is the same: each CV that should remain in the stack is
|
||||
// represented by a 1-bit in the total number of chunks (or bytes) so far.
|
||||
INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) {
|
||||
size_t post_merge_stack_len = (size_t)popcnt(total_len);
|
||||
while (self->cv_stack_len > post_merge_stack_len) {
|
||||
uint8_t *parent_node =
|
||||
&self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN];
|
||||
output_t output = parent_output(parent_node, self->key, self->chunk.flags);
|
||||
output_chaining_value(&output, parent_node);
|
||||
self->cv_stack_len -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
// In reference_impl.rs, we merge the new CV with existing CVs from the stack
|
||||
// before pushing it. We can do that because we know more input is coming, so
|
||||
// we know none of the merges are root.
|
||||
//
|
||||
// This setting is different. We want to feed as much input as possible to
|
||||
// compress_subtree_wide(), without setting aside anything for the chunk_state.
|
||||
// If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once
|
||||
// as a single subtree, if at all possible.
|
||||
//
|
||||
// This leads to two problems:
|
||||
// 1) This 64 KiB input might be the only call that ever gets made to update.
|
||||
// In this case, the root node of the 64 KiB subtree would be the root node
|
||||
// of the whole tree, and it would need to be ROOT finalized. We can't
|
||||
// compress it until we know.
|
||||
// 2) This 64 KiB input might complete a larger tree, whose root node is
|
||||
// similarly going to be the the root of the whole tree. For example, maybe
|
||||
// we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the
|
||||
// node at the root of the 256 KiB subtree until we know how to finalize it.
|
||||
//
|
||||
// The second problem is solved with "lazy merging". That is, when we're about
|
||||
// to add a CV to the stack, we don't merge it with anything first, as the
|
||||
// reference impl does. Instead we do merges using the *previous* CV that was
|
||||
// added, which is sitting on top of the stack, and we put the new CV
|
||||
// (unmerged) on top of the stack afterwards. This guarantees that we never
|
||||
// merge the root node until finalize().
|
||||
//
|
||||
// Solving the first problem requires an additional tool,
|
||||
// compress_subtree_to_parent_node(). That function always returns the top
|
||||
// *two* chaining values of the subtree it's compressing. We then do lazy
|
||||
// merging with each of them separately, so that the second CV will always
|
||||
// remain unmerged. (That also helps us support extendable output when we're
|
||||
// hashing an input all-at-once.)
|
||||
INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN],
|
||||
uint64_t chunk_counter) {
|
||||
hasher_merge_cv_stack(self, chunk_counter);
|
||||
memcpy(&self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], new_cv,
|
||||
BLAKE3_OUT_LEN);
|
||||
self->cv_stack_len += 1;
|
||||
}
|
||||
|
||||
void blake3_hasher_update(blake3_hasher *self, const void *input,
|
||||
size_t input_len) {
|
||||
// Explicitly checking for zero avoids causing UB by passing a null pointer
|
||||
// to memcpy. This comes up in practice with things like:
|
||||
// std::vector<uint8_t> v;
|
||||
// blake3_hasher_update(&hasher, v.data(), v.size());
|
||||
if (input_len == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint8_t *input_bytes = (const uint8_t *)input;
|
||||
|
||||
// If we have some partial chunk bytes in the internal chunk_state, we need
|
||||
// to finish that chunk first.
|
||||
if (chunk_state_len(&self->chunk) > 0) {
|
||||
size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&self->chunk);
|
||||
if (take > input_len) {
|
||||
take = input_len;
|
||||
}
|
||||
chunk_state_update(&self->chunk, input_bytes, take);
|
||||
input_bytes += take;
|
||||
input_len -= take;
|
||||
// If we've filled the current chunk and there's more coming, finalize this
|
||||
// chunk and proceed. In this case we know it's not the root.
|
||||
if (input_len > 0) {
|
||||
output_t output = chunk_state_output(&self->chunk);
|
||||
uint8_t chunk_cv[32];
|
||||
output_chaining_value(&output, chunk_cv);
|
||||
hasher_push_cv(self, chunk_cv, self->chunk.chunk_counter);
|
||||
chunk_state_reset(&self->chunk, self->key, self->chunk.chunk_counter + 1);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Now the chunk_state is clear, and we have more input. If there's more than
|
||||
// a single chunk (so, definitely not the root chunk), hash the largest whole
|
||||
// subtree we can, with the full benefits of SIMD (and maybe in the future,
|
||||
// multi-threading) parallelism. Two restrictions:
|
||||
// - The subtree has to be a power-of-2 number of chunks. Only subtrees along
|
||||
// the right edge can be incomplete, and we don't know where the right edge
|
||||
// is going to be until we get to finalize().
|
||||
// - The subtree must evenly divide the total number of chunks up until this
|
||||
// point (if total is not 0). If the current incomplete subtree is only
|
||||
// waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have
|
||||
// to complete the current subtree first.
|
||||
// Because we might need to break up the input to form powers of 2, or to
|
||||
// evenly divide what we already have, this part runs in a loop.
|
||||
while (input_len > BLAKE3_CHUNK_LEN) {
|
||||
size_t subtree_len = round_down_to_power_of_2(input_len);
|
||||
uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN;
|
||||
// Shrink the subtree_len until it evenly divides the count so far. We know
|
||||
// that subtree_len itself is a power of 2, so we can use a bitmasking
|
||||
// trick instead of an actual remainder operation. (Note that if the caller
|
||||
// consistently passes power-of-2 inputs of the same size, as is hopefully
|
||||
// typical, this loop condition will always fail, and subtree_len will
|
||||
// always be the full length of the input.)
|
||||
//
|
||||
// An aside: We don't have to shrink subtree_len quite this much. For
|
||||
// example, if count_so_far is 1, we could pass 2 chunks to
|
||||
// compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still
|
||||
// get the right answer in the end, and we might get to use 2-way SIMD
|
||||
// parallelism. The problem with this optimization, is that it gets us
|
||||
// stuck always hashing 2 chunks. The total number of chunks will remain
|
||||
// odd, and we'll never graduate to higher degrees of parallelism. See
|
||||
// https://github.com/BLAKE3-team/BLAKE3/issues/69.
|
||||
while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) {
|
||||
subtree_len /= 2;
|
||||
}
|
||||
// The shrunken subtree_len might now be 1 chunk long. If so, hash that one
|
||||
// chunk by itself. Otherwise, compress the subtree into a pair of CVs.
|
||||
uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN;
|
||||
if (subtree_len <= BLAKE3_CHUNK_LEN) {
|
||||
blake3_chunk_state chunk_state;
|
||||
chunk_state_init(&chunk_state, self->key, self->chunk.flags);
|
||||
chunk_state.chunk_counter = self->chunk.chunk_counter;
|
||||
chunk_state_update(&chunk_state, input_bytes, subtree_len);
|
||||
output_t output = chunk_state_output(&chunk_state);
|
||||
uint8_t cv[BLAKE3_OUT_LEN];
|
||||
output_chaining_value(&output, cv);
|
||||
hasher_push_cv(self, cv, chunk_state.chunk_counter);
|
||||
} else {
|
||||
// This is the high-performance happy path, though getting here depends
|
||||
// on the caller giving us a long enough input.
|
||||
uint8_t cv_pair[2 * BLAKE3_OUT_LEN];
|
||||
compress_subtree_to_parent_node(input_bytes, subtree_len, self->key,
|
||||
self->chunk.chunk_counter,
|
||||
self->chunk.flags, cv_pair);
|
||||
hasher_push_cv(self, cv_pair, self->chunk.chunk_counter);
|
||||
hasher_push_cv(self, &cv_pair[BLAKE3_OUT_LEN],
|
||||
self->chunk.chunk_counter + (subtree_chunks / 2));
|
||||
}
|
||||
self->chunk.chunk_counter += subtree_chunks;
|
||||
input_bytes += subtree_len;
|
||||
input_len -= subtree_len;
|
||||
}
|
||||
|
||||
// If there's any remaining input less than a full chunk, add it to the chunk
|
||||
// state. In that case, also do a final merge loop to make sure the subtree
|
||||
// stack doesn't contain any unmerged pairs. The remaining input means we
|
||||
// know these merges are non-root. This merge loop isn't strictly necessary
|
||||
// here, because hasher_push_chunk_cv already does its own merge loop, but it
|
||||
// simplifies blake3_hasher_finalize below.
|
||||
if (input_len > 0) {
|
||||
chunk_state_update(&self->chunk, input_bytes, input_len);
|
||||
hasher_merge_cv_stack(self, self->chunk.chunk_counter);
|
||||
}
|
||||
}
|
||||
|
||||
void blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out,
|
||||
size_t out_len) {
|
||||
blake3_hasher_finalize_seek(self, 0, out, out_len);
|
||||
}
|
||||
|
||||
void blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek,
|
||||
uint8_t *out, size_t out_len) {
|
||||
// Explicitly checking for zero avoids causing UB by passing a null pointer
|
||||
// to memcpy. This comes up in practice with things like:
|
||||
// std::vector<uint8_t> v;
|
||||
// blake3_hasher_finalize(&hasher, v.data(), v.size());
|
||||
if (out_len == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
// If the subtree stack is empty, then the current chunk is the root.
|
||||
if (self->cv_stack_len == 0) {
|
||||
output_t output = chunk_state_output(&self->chunk);
|
||||
output_root_bytes(&output, seek, out, out_len);
|
||||
return;
|
||||
}
|
||||
// If there are any bytes in the chunk state, finalize that chunk and do a
|
||||
// roll-up merge between that chunk hash and every subtree in the stack. In
|
||||
// this case, the extra merge loop at the end of blake3_hasher_update
|
||||
// guarantees that none of the subtrees in the stack need to be merged with
|
||||
// each other first. Otherwise, if there are no bytes in the chunk state,
|
||||
// then the top of the stack is a chunk hash, and we start the merge from
|
||||
// that.
|
||||
output_t output;
|
||||
size_t cvs_remaining;
|
||||
if (chunk_state_len(&self->chunk) > 0) {
|
||||
cvs_remaining = self->cv_stack_len;
|
||||
output = chunk_state_output(&self->chunk);
|
||||
} else {
|
||||
// There are always at least 2 CVs in the stack in this case.
|
||||
cvs_remaining = self->cv_stack_len - 2;
|
||||
output = parent_output(&self->cv_stack[cvs_remaining * 32], self->key,
|
||||
self->chunk.flags);
|
||||
}
|
||||
while (cvs_remaining > 0) {
|
||||
cvs_remaining -= 1;
|
||||
uint8_t parent_block[BLAKE3_BLOCK_LEN];
|
||||
memcpy(parent_block, &self->cv_stack[cvs_remaining * 32], 32);
|
||||
output_chaining_value(&output, &parent_block[32]);
|
||||
output = parent_output(parent_block, self->key, self->chunk.flags);
|
||||
}
|
||||
output_root_bytes(&output, seek, out, out_len);
|
||||
}
|
||||
59
src/crypto/blake3/blake3.h
Normal file
59
src/crypto/blake3/blake3.h
Normal file
@ -0,0 +1,59 @@
|
||||
#ifndef BLAKE3_H
|
||||
#define BLAKE3_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define BLAKE3_VERSION_STRING "0.3.7"
|
||||
#define BLAKE3_KEY_LEN 32
|
||||
#define BLAKE3_OUT_LEN 32
|
||||
#define BLAKE3_BLOCK_LEN 64
|
||||
#define BLAKE3_CHUNK_LEN 1024
|
||||
#define BLAKE3_MAX_DEPTH 54
|
||||
|
||||
// This struct is a private implementation detail. It has to be here because
|
||||
// it's part of blake3_hasher below.
|
||||
typedef struct {
|
||||
uint32_t cv[8];
|
||||
uint64_t chunk_counter;
|
||||
uint8_t buf[BLAKE3_BLOCK_LEN];
|
||||
uint8_t buf_len;
|
||||
uint8_t blocks_compressed;
|
||||
uint8_t flags;
|
||||
} blake3_chunk_state;
|
||||
|
||||
typedef struct {
|
||||
uint32_t key[8];
|
||||
blake3_chunk_state chunk;
|
||||
uint8_t cv_stack_len;
|
||||
// The stack size is MAX_DEPTH + 1 because we do lazy merging. For example,
|
||||
// with 7 chunks, we have 3 entries in the stack. Adding an 8th chunk
|
||||
// requires a 4th entry, rather than merging everything down to 1, because we
|
||||
// don't know whether more input is coming. This is different from how the
|
||||
// reference implementation does things.
|
||||
uint8_t cv_stack[(BLAKE3_MAX_DEPTH + 1) * BLAKE3_OUT_LEN];
|
||||
} blake3_hasher;
|
||||
|
||||
const char *blake3_version(void);
|
||||
void blake3_hasher_init(blake3_hasher *self);
|
||||
void blake3_hasher_init_keyed(blake3_hasher *self,
|
||||
const uint8_t key[BLAKE3_KEY_LEN]);
|
||||
void blake3_hasher_init_derive_key(blake3_hasher *self, const char *context);
|
||||
void blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context,
|
||||
size_t context_len);
|
||||
void blake3_hasher_update(blake3_hasher *self, const void *input,
|
||||
size_t input_len);
|
||||
void blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out,
|
||||
size_t out_len);
|
||||
void blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek,
|
||||
uint8_t *out, size_t out_len);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif /* BLAKE3_H */
|
||||
325
src/crypto/blake3/blake3_avx2.c
Normal file
325
src/crypto/blake3/blake3_avx2.c
Normal file
@ -0,0 +1,325 @@
|
||||
#include "blake3_impl.h"
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
#define DEGREE 8
|
||||
|
||||
INLINE __m256i loadu(const uint8_t src[32]) {
|
||||
return _mm256_loadu_si256((const __m256i *)src);
|
||||
}
|
||||
|
||||
INLINE void storeu(__m256i src, uint8_t dest[16]) {
|
||||
_mm256_storeu_si256((__m256i *)dest, src);
|
||||
}
|
||||
|
||||
INLINE __m256i addv(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); }
|
||||
|
||||
// Note that clang-format doesn't like the name "xor" for some reason.
|
||||
INLINE __m256i xorv(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); }
|
||||
|
||||
INLINE __m256i set1(uint32_t x) { return _mm256_set1_epi32((int32_t)x); }
|
||||
|
||||
INLINE __m256i rot16(__m256i x) {
|
||||
return _mm256_shuffle_epi8(
|
||||
x, _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2,
|
||||
13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
|
||||
}
|
||||
|
||||
INLINE __m256i rot12(__m256i x) {
|
||||
return _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12));
|
||||
}
|
||||
|
||||
INLINE __m256i rot8(__m256i x) {
|
||||
return _mm256_shuffle_epi8(
|
||||
x, _mm256_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1,
|
||||
12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
|
||||
}
|
||||
|
||||
INLINE __m256i rot7(__m256i x) {
|
||||
return _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7));
|
||||
}
|
||||
|
||||
INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r) {
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
|
||||
v[0] = addv(v[0], v[4]);
|
||||
v[1] = addv(v[1], v[5]);
|
||||
v[2] = addv(v[2], v[6]);
|
||||
v[3] = addv(v[3], v[7]);
|
||||
v[12] = xorv(v[12], v[0]);
|
||||
v[13] = xorv(v[13], v[1]);
|
||||
v[14] = xorv(v[14], v[2]);
|
||||
v[15] = xorv(v[15], v[3]);
|
||||
v[12] = rot16(v[12]);
|
||||
v[13] = rot16(v[13]);
|
||||
v[14] = rot16(v[14]);
|
||||
v[15] = rot16(v[15]);
|
||||
v[8] = addv(v[8], v[12]);
|
||||
v[9] = addv(v[9], v[13]);
|
||||
v[10] = addv(v[10], v[14]);
|
||||
v[11] = addv(v[11], v[15]);
|
||||
v[4] = xorv(v[4], v[8]);
|
||||
v[5] = xorv(v[5], v[9]);
|
||||
v[6] = xorv(v[6], v[10]);
|
||||
v[7] = xorv(v[7], v[11]);
|
||||
v[4] = rot12(v[4]);
|
||||
v[5] = rot12(v[5]);
|
||||
v[6] = rot12(v[6]);
|
||||
v[7] = rot12(v[7]);
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
|
||||
v[0] = addv(v[0], v[4]);
|
||||
v[1] = addv(v[1], v[5]);
|
||||
v[2] = addv(v[2], v[6]);
|
||||
v[3] = addv(v[3], v[7]);
|
||||
v[12] = xorv(v[12], v[0]);
|
||||
v[13] = xorv(v[13], v[1]);
|
||||
v[14] = xorv(v[14], v[2]);
|
||||
v[15] = xorv(v[15], v[3]);
|
||||
v[12] = rot8(v[12]);
|
||||
v[13] = rot8(v[13]);
|
||||
v[14] = rot8(v[14]);
|
||||
v[15] = rot8(v[15]);
|
||||
v[8] = addv(v[8], v[12]);
|
||||
v[9] = addv(v[9], v[13]);
|
||||
v[10] = addv(v[10], v[14]);
|
||||
v[11] = addv(v[11], v[15]);
|
||||
v[4] = xorv(v[4], v[8]);
|
||||
v[5] = xorv(v[5], v[9]);
|
||||
v[6] = xorv(v[6], v[10]);
|
||||
v[7] = xorv(v[7], v[11]);
|
||||
v[4] = rot7(v[4]);
|
||||
v[5] = rot7(v[5]);
|
||||
v[6] = rot7(v[6]);
|
||||
v[7] = rot7(v[7]);
|
||||
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
|
||||
v[0] = addv(v[0], v[5]);
|
||||
v[1] = addv(v[1], v[6]);
|
||||
v[2] = addv(v[2], v[7]);
|
||||
v[3] = addv(v[3], v[4]);
|
||||
v[15] = xorv(v[15], v[0]);
|
||||
v[12] = xorv(v[12], v[1]);
|
||||
v[13] = xorv(v[13], v[2]);
|
||||
v[14] = xorv(v[14], v[3]);
|
||||
v[15] = rot16(v[15]);
|
||||
v[12] = rot16(v[12]);
|
||||
v[13] = rot16(v[13]);
|
||||
v[14] = rot16(v[14]);
|
||||
v[10] = addv(v[10], v[15]);
|
||||
v[11] = addv(v[11], v[12]);
|
||||
v[8] = addv(v[8], v[13]);
|
||||
v[9] = addv(v[9], v[14]);
|
||||
v[5] = xorv(v[5], v[10]);
|
||||
v[6] = xorv(v[6], v[11]);
|
||||
v[7] = xorv(v[7], v[8]);
|
||||
v[4] = xorv(v[4], v[9]);
|
||||
v[5] = rot12(v[5]);
|
||||
v[6] = rot12(v[6]);
|
||||
v[7] = rot12(v[7]);
|
||||
v[4] = rot12(v[4]);
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
|
||||
v[0] = addv(v[0], v[5]);
|
||||
v[1] = addv(v[1], v[6]);
|
||||
v[2] = addv(v[2], v[7]);
|
||||
v[3] = addv(v[3], v[4]);
|
||||
v[15] = xorv(v[15], v[0]);
|
||||
v[12] = xorv(v[12], v[1]);
|
||||
v[13] = xorv(v[13], v[2]);
|
||||
v[14] = xorv(v[14], v[3]);
|
||||
v[15] = rot8(v[15]);
|
||||
v[12] = rot8(v[12]);
|
||||
v[13] = rot8(v[13]);
|
||||
v[14] = rot8(v[14]);
|
||||
v[10] = addv(v[10], v[15]);
|
||||
v[11] = addv(v[11], v[12]);
|
||||
v[8] = addv(v[8], v[13]);
|
||||
v[9] = addv(v[9], v[14]);
|
||||
v[5] = xorv(v[5], v[10]);
|
||||
v[6] = xorv(v[6], v[11]);
|
||||
v[7] = xorv(v[7], v[8]);
|
||||
v[4] = xorv(v[4], v[9]);
|
||||
v[5] = rot7(v[5]);
|
||||
v[6] = rot7(v[6]);
|
||||
v[7] = rot7(v[7]);
|
||||
v[4] = rot7(v[4]);
|
||||
}
|
||||
|
||||
INLINE void transpose_vecs(__m256i vecs[DEGREE]) {
|
||||
// Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high
|
||||
// is 22/33/66/77.
|
||||
__m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]);
|
||||
__m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]);
|
||||
__m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]);
|
||||
__m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]);
|
||||
__m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]);
|
||||
__m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]);
|
||||
__m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]);
|
||||
__m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]);
|
||||
|
||||
// Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is
|
||||
// 11/33.
|
||||
__m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145);
|
||||
__m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145);
|
||||
__m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367);
|
||||
__m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367);
|
||||
__m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145);
|
||||
__m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145);
|
||||
__m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367);
|
||||
__m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367);
|
||||
|
||||
// Interleave 128-bit lanes.
|
||||
vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20);
|
||||
vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20);
|
||||
vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20);
|
||||
vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20);
|
||||
vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31);
|
||||
vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31);
|
||||
vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31);
|
||||
vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31);
|
||||
}
|
||||
|
||||
INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
|
||||
size_t block_offset, __m256i out[16]) {
|
||||
out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[4] = loadu(&inputs[4][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[5] = loadu(&inputs[5][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[6] = loadu(&inputs[6][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[7] = loadu(&inputs[7][block_offset + 0 * sizeof(__m256i)]);
|
||||
out[8] = loadu(&inputs[0][block_offset + 1 * sizeof(__m256i)]);
|
||||
out[9] = loadu(&inputs[1][block_offset + 1 * sizeof(__m256i)]);
|
||||
out[10] = loadu(&inputs[2][block_offset + 1 * sizeof(__m256i)]);
|
||||
out[11] = loadu(&inputs[3][block_offset + 1 * sizeof(__m256i)]);
|
||||
out[12] = loadu(&inputs[4][block_offset + 1 * sizeof(__m256i)]);
|
||||
out[13] = loadu(&inputs[5][block_offset + 1 * sizeof(__m256i)]);
|
||||
out[14] = loadu(&inputs[6][block_offset + 1 * sizeof(__m256i)]);
|
||||
out[15] = loadu(&inputs[7][block_offset + 1 * sizeof(__m256i)]);
|
||||
for (size_t i = 0; i < 8; ++i) {
|
||||
_mm_prefetch(&inputs[i][block_offset + 256], _MM_HINT_T0);
|
||||
}
|
||||
transpose_vecs(&out[0]);
|
||||
transpose_vecs(&out[8]);
|
||||
}
|
||||
|
||||
INLINE void load_counters(uint64_t counter, bool increment_counter,
|
||||
__m256i *out_lo, __m256i *out_hi) {
|
||||
const __m256i mask = _mm256_set1_epi32(-(int32_t)increment_counter);
|
||||
const __m256i add0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
|
||||
const __m256i add1 = _mm256_and_si256(mask, add0);
|
||||
__m256i l = _mm256_add_epi32(_mm256_set1_epi32(counter), add1);
|
||||
__m256i carry = _mm256_cmpgt_epi32(_mm256_xor_si256(add1, _mm256_set1_epi32(0x80000000)),
|
||||
_mm256_xor_si256( l, _mm256_set1_epi32(0x80000000)));
|
||||
__m256i h = _mm256_sub_epi32(_mm256_set1_epi32(counter >> 32), carry);
|
||||
*out_lo = l;
|
||||
*out_hi = h;
|
||||
}
|
||||
|
||||
void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
||||
__m256i h_vecs[8] = {
|
||||
set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
|
||||
set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
|
||||
};
|
||||
__m256i counter_low_vec, counter_high_vec;
|
||||
load_counters(counter, increment_counter, &counter_low_vec,
|
||||
&counter_high_vec);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
|
||||
for (size_t block = 0; block < blocks; block++) {
|
||||
if (block + 1 == blocks) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
__m256i block_len_vec = set1(BLAKE3_BLOCK_LEN);
|
||||
__m256i block_flags_vec = set1(block_flags);
|
||||
__m256i msg_vecs[16];
|
||||
transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
|
||||
|
||||
__m256i v[16] = {
|
||||
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
|
||||
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
|
||||
set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
|
||||
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
|
||||
};
|
||||
round_fn(v, msg_vecs, 0);
|
||||
round_fn(v, msg_vecs, 1);
|
||||
round_fn(v, msg_vecs, 2);
|
||||
round_fn(v, msg_vecs, 3);
|
||||
round_fn(v, msg_vecs, 4);
|
||||
round_fn(v, msg_vecs, 5);
|
||||
round_fn(v, msg_vecs, 6);
|
||||
h_vecs[0] = xorv(v[0], v[8]);
|
||||
h_vecs[1] = xorv(v[1], v[9]);
|
||||
h_vecs[2] = xorv(v[2], v[10]);
|
||||
h_vecs[3] = xorv(v[3], v[11]);
|
||||
h_vecs[4] = xorv(v[4], v[12]);
|
||||
h_vecs[5] = xorv(v[5], v[13]);
|
||||
h_vecs[6] = xorv(v[6], v[14]);
|
||||
h_vecs[7] = xorv(v[7], v[15]);
|
||||
|
||||
block_flags = flags;
|
||||
}
|
||||
|
||||
transpose_vecs(h_vecs);
|
||||
storeu(h_vecs[0], &out[0 * sizeof(__m256i)]);
|
||||
storeu(h_vecs[1], &out[1 * sizeof(__m256i)]);
|
||||
storeu(h_vecs[2], &out[2 * sizeof(__m256i)]);
|
||||
storeu(h_vecs[3], &out[3 * sizeof(__m256i)]);
|
||||
storeu(h_vecs[4], &out[4 * sizeof(__m256i)]);
|
||||
storeu(h_vecs[5], &out[5 * sizeof(__m256i)]);
|
||||
storeu(h_vecs[6], &out[6 * sizeof(__m256i)]);
|
||||
storeu(h_vecs[7], &out[7 * sizeof(__m256i)]);
|
||||
}
|
||||
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#else
|
||||
void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
|
||||
void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out) {
|
||||
while (num_inputs >= DEGREE) {
|
||||
blake3_hash8_avx2(inputs, blocks, key, counter, increment_counter, flags,
|
||||
flags_start, flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += DEGREE;
|
||||
}
|
||||
inputs += DEGREE;
|
||||
num_inputs -= DEGREE;
|
||||
out = &out[DEGREE * BLAKE3_OUT_LEN];
|
||||
}
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end, out);
|
||||
#else
|
||||
blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
#endif
|
||||
}
|
||||
1815
src/crypto/blake3/blake3_avx2_x86-64_unix.S
Normal file
1815
src/crypto/blake3/blake3_avx2_x86-64_unix.S
Normal file
File diff suppressed because it is too large
Load Diff
1817
src/crypto/blake3/blake3_avx2_x86-64_windows_gnu.S
Normal file
1817
src/crypto/blake3/blake3_avx2_x86-64_windows_gnu.S
Normal file
File diff suppressed because it is too large
Load Diff
1828
src/crypto/blake3/blake3_avx2_x86-64_windows_msvc.asm
Normal file
1828
src/crypto/blake3/blake3_avx2_x86-64_windows_msvc.asm
Normal file
File diff suppressed because it is too large
Load Diff
1204
src/crypto/blake3/blake3_avx512.c
Normal file
1204
src/crypto/blake3/blake3_avx512.c
Normal file
File diff suppressed because it is too large
Load Diff
2585
src/crypto/blake3/blake3_avx512_x86-64_unix.S
Normal file
2585
src/crypto/blake3/blake3_avx512_x86-64_unix.S
Normal file
File diff suppressed because it is too large
Load Diff
2615
src/crypto/blake3/blake3_avx512_x86-64_windows_gnu.S
Normal file
2615
src/crypto/blake3/blake3_avx512_x86-64_windows_gnu.S
Normal file
File diff suppressed because it is too large
Load Diff
2634
src/crypto/blake3/blake3_avx512_x86-64_windows_msvc.asm
Normal file
2634
src/crypto/blake3/blake3_avx512_x86-64_windows_msvc.asm
Normal file
File diff suppressed because it is too large
Load Diff
276
src/crypto/blake3/blake3_dispatch.c
Normal file
276
src/crypto/blake3/blake3_dispatch.c
Normal file
@ -0,0 +1,276 @@
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include "blake3_impl.h"
|
||||
|
||||
#if defined(IS_X86)
|
||||
#if defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#elif defined(__GNUC__)
|
||||
#include <immintrin.h>
|
||||
#else
|
||||
#error "Unimplemented!"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define MAYBE_UNUSED(x) (void)((x))
|
||||
|
||||
#if defined(IS_X86)
|
||||
static uint64_t xgetbv() {
|
||||
#if defined(_MSC_VER)
|
||||
return _xgetbv(0);
|
||||
#else
|
||||
uint32_t eax = 0, edx = 0;
|
||||
__asm__ __volatile__("xgetbv\n" : "=a"(eax), "=d"(edx) : "c"(0));
|
||||
return ((uint64_t)edx << 32) | eax;
|
||||
#endif
|
||||
}
|
||||
|
||||
static void cpuid(uint32_t out[4], uint32_t id) {
|
||||
#if defined(_MSC_VER)
|
||||
__cpuid((int *)out, id);
|
||||
#elif defined(__i386__) || defined(_M_IX86)
|
||||
__asm__ __volatile__("movl %%ebx, %1\n"
|
||||
"cpuid\n"
|
||||
"xchgl %1, %%ebx\n"
|
||||
: "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id));
|
||||
#else
|
||||
__asm__ __volatile__("cpuid\n"
|
||||
: "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id));
|
||||
#endif
|
||||
}
|
||||
|
||||
static void cpuidex(uint32_t out[4], uint32_t id, uint32_t sid) {
|
||||
#if defined(_MSC_VER)
|
||||
__cpuidex((int *)out, id, sid);
|
||||
#elif defined(__i386__) || defined(_M_IX86)
|
||||
__asm__ __volatile__("movl %%ebx, %1\n"
|
||||
"cpuid\n"
|
||||
"xchgl %1, %%ebx\n"
|
||||
: "=a"(out[0]), "=r"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id), "c"(sid));
|
||||
#else
|
||||
__asm__ __volatile__("cpuid\n"
|
||||
: "=a"(out[0]), "=b"(out[1]), "=c"(out[2]), "=d"(out[3])
|
||||
: "a"(id), "c"(sid));
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
enum cpu_feature {
|
||||
SSE2 = 1 << 0,
|
||||
SSSE3 = 1 << 1,
|
||||
SSE41 = 1 << 2,
|
||||
AVX = 1 << 3,
|
||||
AVX2 = 1 << 4,
|
||||
AVX512F = 1 << 5,
|
||||
AVX512VL = 1 << 6,
|
||||
/* ... */
|
||||
UNDEFINED = 1 << 30
|
||||
};
|
||||
|
||||
#if !defined(BLAKE3_TESTING)
|
||||
static /* Allow the variable to be controlled manually for testing */
|
||||
#endif
|
||||
int g_cpu_features = UNDEFINED;
|
||||
|
||||
#if !defined(BLAKE3_TESTING)
|
||||
static
|
||||
#endif
|
||||
int
|
||||
get_cpu_features() {
|
||||
|
||||
if (g_cpu_features != UNDEFINED) {
|
||||
return g_cpu_features;
|
||||
} else {
|
||||
#if defined(IS_X86)
|
||||
uint32_t regs[4] = {0};
|
||||
uint32_t *eax = ®s[0], *ebx = ®s[1], *ecx = ®s[2], *edx = ®s[3];
|
||||
(void)edx;
|
||||
int features = 0;
|
||||
cpuid(regs, 0);
|
||||
const int max_id = *eax;
|
||||
cpuid(regs, 1);
|
||||
#if defined(__amd64__) || defined(_M_X64)
|
||||
features |= SSE2;
|
||||
#else
|
||||
if (*edx & (1UL << 26))
|
||||
features |= SSE2;
|
||||
#endif
|
||||
if (*ecx & (1UL << 0))
|
||||
features |= SSSE3;
|
||||
if (*ecx & (1UL << 19))
|
||||
features |= SSE41;
|
||||
|
||||
if (*ecx & (1UL << 27)) { // OSXSAVE
|
||||
const uint64_t mask = xgetbv();
|
||||
if ((mask & 6) == 6) { // SSE and AVX states
|
||||
if (*ecx & (1UL << 28))
|
||||
features |= AVX;
|
||||
if (max_id >= 7) {
|
||||
cpuidex(regs, 7, 0);
|
||||
if (*ebx & (1UL << 5))
|
||||
features |= AVX2;
|
||||
if ((mask & 224) == 224) { // Opmask, ZMM_Hi256, Hi16_Zmm
|
||||
if (*ebx & (1UL << 31))
|
||||
features |= AVX512VL;
|
||||
if (*ebx & (1UL << 16))
|
||||
features |= AVX512F;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
g_cpu_features = features;
|
||||
return features;
|
||||
#else
|
||||
/* How to detect NEON? */
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void blake3_compress_in_place(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
#if defined(IS_X86)
|
||||
const int features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if (features & AVX512VL) {
|
||||
blake3_compress_in_place_avx512(cv, block, block_len, counter, flags);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
blake3_compress_in_place_sse41(cv, block, block_len, counter, flags);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
blake3_compress_in_place_sse2(cv, block, block_len, counter, flags);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
blake3_compress_in_place_portable(cv, block, block_len, counter, flags);
|
||||
}
|
||||
|
||||
void blake3_compress_xof(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags,
|
||||
uint8_t out[64]) {
|
||||
#if defined(IS_X86)
|
||||
const int features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if (features & AVX512VL) {
|
||||
blake3_compress_xof_avx512(cv, block, block_len, counter, flags, out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
blake3_compress_xof_sse41(cv, block, block_len, counter, flags, out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
blake3_compress_xof_sse2(cv, block, block_len, counter, flags, out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
blake3_compress_xof_portable(cv, block, block_len, counter, flags, out);
|
||||
}
|
||||
|
||||
void blake3_hash_many(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
||||
#if defined(IS_X86)
|
||||
const int features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if ((features & (AVX512F|AVX512VL)) == (AVX512F|AVX512VL)) {
|
||||
blake3_hash_many_avx512(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX2)
|
||||
if (features & AVX2) {
|
||||
blake3_hash_many_avx2(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
blake3_hash_many_sse2(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(BLAKE3_USE_NEON)
|
||||
blake3_hash_many_neon(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end, out);
|
||||
return;
|
||||
#endif
|
||||
|
||||
blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter,
|
||||
increment_counter, flags, flags_start, flags_end,
|
||||
out);
|
||||
}
|
||||
|
||||
// The dynamically detected SIMD degree of the current platform.
|
||||
size_t blake3_simd_degree(void) {
|
||||
#if defined(IS_X86)
|
||||
const int features = get_cpu_features();
|
||||
MAYBE_UNUSED(features);
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
if ((features & (AVX512F|AVX512VL)) == (AVX512F|AVX512VL)) {
|
||||
return 16;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX2)
|
||||
if (features & AVX2) {
|
||||
return 8;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
if (features & SSE41) {
|
||||
return 4;
|
||||
}
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
if (features & SSE2) {
|
||||
return 4;
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#if defined(BLAKE3_USE_NEON)
|
||||
return 4;
|
||||
#endif
|
||||
return 1;
|
||||
}
|
||||
269
src/crypto/blake3/blake3_impl.h
Normal file
269
src/crypto/blake3/blake3_impl.h
Normal file
@ -0,0 +1,269 @@
|
||||
#ifndef BLAKE3_IMPL_H
|
||||
#define BLAKE3_IMPL_H
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "blake3.h"
|
||||
|
||||
// internal flags
|
||||
enum blake3_flags {
|
||||
CHUNK_START = 1 << 0,
|
||||
CHUNK_END = 1 << 1,
|
||||
PARENT = 1 << 2,
|
||||
ROOT = 1 << 3,
|
||||
KEYED_HASH = 1 << 4,
|
||||
DERIVE_KEY_CONTEXT = 1 << 5,
|
||||
DERIVE_KEY_MATERIAL = 1 << 6,
|
||||
};
|
||||
|
||||
// This C implementation tries to support recent versions of GCC, Clang, and
|
||||
// MSVC.
|
||||
#if defined(_MSC_VER)
|
||||
#define INLINE static __forceinline
|
||||
#else
|
||||
#define INLINE static inline __attribute__((always_inline))
|
||||
#endif
|
||||
|
||||
#if defined(__x86_64__) || defined(_M_X64)
|
||||
#define IS_X86
|
||||
#define IS_X86_64
|
||||
#endif
|
||||
|
||||
#if defined(__i386__) || defined(_M_IX86)
|
||||
#define IS_X86
|
||||
#define IS_X86_32
|
||||
#endif
|
||||
|
||||
#if defined(IS_X86)
|
||||
#if defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
#include <immintrin.h>
|
||||
#endif
|
||||
|
||||
#if defined(IS_X86)
|
||||
#define MAX_SIMD_DEGREE 16
|
||||
#elif defined(BLAKE3_USE_NEON)
|
||||
#define MAX_SIMD_DEGREE 4
|
||||
#else
|
||||
#define MAX_SIMD_DEGREE 1
|
||||
#endif
|
||||
|
||||
// There are some places where we want a static size that's equal to the
|
||||
// MAX_SIMD_DEGREE, but also at least 2.
|
||||
#define MAX_SIMD_DEGREE_OR_2 (MAX_SIMD_DEGREE > 2 ? MAX_SIMD_DEGREE : 2)
|
||||
|
||||
static const uint32_t IV[8] = {0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL,
|
||||
0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL,
|
||||
0x1F83D9ABUL, 0x5BE0CD19UL};
|
||||
|
||||
static const uint8_t MSG_SCHEDULE[7][16] = {
|
||||
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
|
||||
{2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8},
|
||||
{3, 4, 10, 12, 13, 2, 7, 14, 6, 5, 9, 0, 11, 15, 8, 1},
|
||||
{10, 7, 12, 9, 14, 3, 13, 15, 4, 0, 11, 2, 5, 8, 1, 6},
|
||||
{12, 13, 9, 11, 15, 10, 14, 8, 7, 2, 5, 3, 0, 1, 6, 4},
|
||||
{9, 14, 11, 5, 8, 12, 15, 1, 13, 3, 0, 10, 2, 6, 4, 7},
|
||||
{11, 15, 5, 0, 1, 9, 8, 6, 14, 10, 2, 12, 3, 4, 7, 13},
|
||||
};
|
||||
|
||||
/* Find index of the highest set bit */
|
||||
/* x is assumed to be nonzero. */
|
||||
static unsigned int highest_one(uint64_t x) {
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
return 63 ^ __builtin_clzll(x);
|
||||
#elif defined(_MSC_VER) && defined(IS_X86_64)
|
||||
unsigned long index;
|
||||
_BitScanReverse64(&index, x);
|
||||
return index;
|
||||
#elif defined(_MSC_VER) && defined(IS_X86_32)
|
||||
if(x >> 32) {
|
||||
unsigned long index;
|
||||
_BitScanReverse(&index, x >> 32);
|
||||
return 32 + index;
|
||||
} else {
|
||||
unsigned long index;
|
||||
_BitScanReverse(&index, x);
|
||||
return index;
|
||||
}
|
||||
#else
|
||||
unsigned int c = 0;
|
||||
if(x & 0xffffffff00000000ULL) { x >>= 32; c += 32; }
|
||||
if(x & 0x00000000ffff0000ULL) { x >>= 16; c += 16; }
|
||||
if(x & 0x000000000000ff00ULL) { x >>= 8; c += 8; }
|
||||
if(x & 0x00000000000000f0ULL) { x >>= 4; c += 4; }
|
||||
if(x & 0x000000000000000cULL) { x >>= 2; c += 2; }
|
||||
if(x & 0x0000000000000002ULL) { c += 1; }
|
||||
return c;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Count the number of 1 bits.
|
||||
INLINE unsigned int popcnt(uint64_t x) {
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
return __builtin_popcountll(x);
|
||||
#else
|
||||
unsigned int count = 0;
|
||||
while (x != 0) {
|
||||
count += 1;
|
||||
x &= x - 1;
|
||||
}
|
||||
return count;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Largest power of two less than or equal to x. As a special case, returns 1
|
||||
// when x is 0.
|
||||
INLINE uint64_t round_down_to_power_of_2(uint64_t x) {
|
||||
return 1ULL << highest_one(x | 1);
|
||||
}
|
||||
|
||||
INLINE uint32_t counter_low(uint64_t counter) { return (uint32_t)counter; }
|
||||
|
||||
INLINE uint32_t counter_high(uint64_t counter) {
|
||||
return (uint32_t)(counter >> 32);
|
||||
}
|
||||
|
||||
INLINE uint32_t load32(const void *src) {
|
||||
const uint8_t *p = (const uint8_t *)src;
|
||||
return ((uint32_t)(p[0]) << 0) | ((uint32_t)(p[1]) << 8) |
|
||||
((uint32_t)(p[2]) << 16) | ((uint32_t)(p[3]) << 24);
|
||||
}
|
||||
|
||||
INLINE void load_key_words(const uint8_t key[BLAKE3_KEY_LEN],
|
||||
uint32_t key_words[8]) {
|
||||
key_words[0] = load32(&key[0 * 4]);
|
||||
key_words[1] = load32(&key[1 * 4]);
|
||||
key_words[2] = load32(&key[2 * 4]);
|
||||
key_words[3] = load32(&key[3 * 4]);
|
||||
key_words[4] = load32(&key[4 * 4]);
|
||||
key_words[5] = load32(&key[5 * 4]);
|
||||
key_words[6] = load32(&key[6 * 4]);
|
||||
key_words[7] = load32(&key[7 * 4]);
|
||||
}
|
||||
|
||||
INLINE void store32(void *dst, uint32_t w) {
|
||||
uint8_t *p = (uint8_t *)dst;
|
||||
p[0] = (uint8_t)(w >> 0);
|
||||
p[1] = (uint8_t)(w >> 8);
|
||||
p[2] = (uint8_t)(w >> 16);
|
||||
p[3] = (uint8_t)(w >> 24);
|
||||
}
|
||||
|
||||
INLINE void store_cv_words(uint8_t bytes_out[32], uint32_t cv_words[8]) {
|
||||
store32(&bytes_out[0 * 4], cv_words[0]);
|
||||
store32(&bytes_out[1 * 4], cv_words[1]);
|
||||
store32(&bytes_out[2 * 4], cv_words[2]);
|
||||
store32(&bytes_out[3 * 4], cv_words[3]);
|
||||
store32(&bytes_out[4 * 4], cv_words[4]);
|
||||
store32(&bytes_out[5 * 4], cv_words[5]);
|
||||
store32(&bytes_out[6 * 4], cv_words[6]);
|
||||
store32(&bytes_out[7 * 4], cv_words[7]);
|
||||
}
|
||||
|
||||
void blake3_compress_in_place(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
|
||||
void blake3_compress_xof(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags,
|
||||
uint8_t out[64]);
|
||||
|
||||
void blake3_hash_many(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out);
|
||||
|
||||
size_t blake3_simd_degree(void);
|
||||
|
||||
|
||||
// Declarations for implementation-specific functions.
|
||||
void blake3_compress_in_place_portable(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
|
||||
void blake3_compress_xof_portable(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
|
||||
void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
|
||||
#if defined(IS_X86)
|
||||
#if !defined(BLAKE3_NO_SSE2)
|
||||
void blake3_compress_in_place_sse2(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
void blake3_compress_xof_sse2(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_SSE41)
|
||||
void blake3_compress_in_place_sse41(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
void blake3_compress_xof_sse41(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX2)
|
||||
void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#if !defined(BLAKE3_NO_AVX512)
|
||||
void blake3_compress_in_place_avx512(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
|
||||
void blake3_compress_xof_avx512(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]);
|
||||
|
||||
void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(BLAKE3_USE_NEON)
|
||||
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out);
|
||||
#endif
|
||||
|
||||
|
||||
#endif /* BLAKE3_IMPL_H */
|
||||
346
src/crypto/blake3/blake3_neon.c
Normal file
346
src/crypto/blake3/blake3_neon.c
Normal file
@ -0,0 +1,346 @@
|
||||
#include "blake3_impl.h"
|
||||
|
||||
#include <arm_neon.h>
|
||||
|
||||
// TODO: This is probably incorrect for big-endian ARM. How should that work?
|
||||
INLINE uint32x4_t loadu_128(const uint8_t src[16]) {
|
||||
// vld1q_u32 has alignment requirements. Don't use it.
|
||||
uint32x4_t x;
|
||||
memcpy(&x, src, 16);
|
||||
return x;
|
||||
}
|
||||
|
||||
INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) {
|
||||
// vst1q_u32 has alignment requirements. Don't use it.
|
||||
memcpy(dest, &src, 16);
|
||||
}
|
||||
|
||||
INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) {
|
||||
return vaddq_u32(a, b);
|
||||
}
|
||||
|
||||
INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) {
|
||||
return veorq_u32(a, b);
|
||||
}
|
||||
|
||||
INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); }
|
||||
|
||||
INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
|
||||
uint32_t array[4] = {a, b, c, d};
|
||||
return vld1q_u32(array);
|
||||
}
|
||||
|
||||
INLINE uint32x4_t rot16_128(uint32x4_t x) {
|
||||
return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16));
|
||||
}
|
||||
|
||||
INLINE uint32x4_t rot12_128(uint32x4_t x) {
|
||||
return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12));
|
||||
}
|
||||
|
||||
INLINE uint32x4_t rot8_128(uint32x4_t x) {
|
||||
return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8));
|
||||
}
|
||||
|
||||
INLINE uint32x4_t rot7_128(uint32x4_t x) {
|
||||
return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7));
|
||||
}
|
||||
|
||||
// TODO: compress_neon
|
||||
|
||||
// TODO: hash2_neon
|
||||
|
||||
/*
|
||||
* ----------------------------------------------------------------------------
|
||||
* hash4_neon
|
||||
* ----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) {
|
||||
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
|
||||
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
|
||||
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
|
||||
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
|
||||
v[0] = add_128(v[0], v[4]);
|
||||
v[1] = add_128(v[1], v[5]);
|
||||
v[2] = add_128(v[2], v[6]);
|
||||
v[3] = add_128(v[3], v[7]);
|
||||
v[12] = xor_128(v[12], v[0]);
|
||||
v[13] = xor_128(v[13], v[1]);
|
||||
v[14] = xor_128(v[14], v[2]);
|
||||
v[15] = xor_128(v[15], v[3]);
|
||||
v[12] = rot16_128(v[12]);
|
||||
v[13] = rot16_128(v[13]);
|
||||
v[14] = rot16_128(v[14]);
|
||||
v[15] = rot16_128(v[15]);
|
||||
v[8] = add_128(v[8], v[12]);
|
||||
v[9] = add_128(v[9], v[13]);
|
||||
v[10] = add_128(v[10], v[14]);
|
||||
v[11] = add_128(v[11], v[15]);
|
||||
v[4] = xor_128(v[4], v[8]);
|
||||
v[5] = xor_128(v[5], v[9]);
|
||||
v[6] = xor_128(v[6], v[10]);
|
||||
v[7] = xor_128(v[7], v[11]);
|
||||
v[4] = rot12_128(v[4]);
|
||||
v[5] = rot12_128(v[5]);
|
||||
v[6] = rot12_128(v[6]);
|
||||
v[7] = rot12_128(v[7]);
|
||||
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
|
||||
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
|
||||
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
|
||||
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
|
||||
v[0] = add_128(v[0], v[4]);
|
||||
v[1] = add_128(v[1], v[5]);
|
||||
v[2] = add_128(v[2], v[6]);
|
||||
v[3] = add_128(v[3], v[7]);
|
||||
v[12] = xor_128(v[12], v[0]);
|
||||
v[13] = xor_128(v[13], v[1]);
|
||||
v[14] = xor_128(v[14], v[2]);
|
||||
v[15] = xor_128(v[15], v[3]);
|
||||
v[12] = rot8_128(v[12]);
|
||||
v[13] = rot8_128(v[13]);
|
||||
v[14] = rot8_128(v[14]);
|
||||
v[15] = rot8_128(v[15]);
|
||||
v[8] = add_128(v[8], v[12]);
|
||||
v[9] = add_128(v[9], v[13]);
|
||||
v[10] = add_128(v[10], v[14]);
|
||||
v[11] = add_128(v[11], v[15]);
|
||||
v[4] = xor_128(v[4], v[8]);
|
||||
v[5] = xor_128(v[5], v[9]);
|
||||
v[6] = xor_128(v[6], v[10]);
|
||||
v[7] = xor_128(v[7], v[11]);
|
||||
v[4] = rot7_128(v[4]);
|
||||
v[5] = rot7_128(v[5]);
|
||||
v[6] = rot7_128(v[6]);
|
||||
v[7] = rot7_128(v[7]);
|
||||
|
||||
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
|
||||
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
|
||||
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
|
||||
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
|
||||
v[0] = add_128(v[0], v[5]);
|
||||
v[1] = add_128(v[1], v[6]);
|
||||
v[2] = add_128(v[2], v[7]);
|
||||
v[3] = add_128(v[3], v[4]);
|
||||
v[15] = xor_128(v[15], v[0]);
|
||||
v[12] = xor_128(v[12], v[1]);
|
||||
v[13] = xor_128(v[13], v[2]);
|
||||
v[14] = xor_128(v[14], v[3]);
|
||||
v[15] = rot16_128(v[15]);
|
||||
v[12] = rot16_128(v[12]);
|
||||
v[13] = rot16_128(v[13]);
|
||||
v[14] = rot16_128(v[14]);
|
||||
v[10] = add_128(v[10], v[15]);
|
||||
v[11] = add_128(v[11], v[12]);
|
||||
v[8] = add_128(v[8], v[13]);
|
||||
v[9] = add_128(v[9], v[14]);
|
||||
v[5] = xor_128(v[5], v[10]);
|
||||
v[6] = xor_128(v[6], v[11]);
|
||||
v[7] = xor_128(v[7], v[8]);
|
||||
v[4] = xor_128(v[4], v[9]);
|
||||
v[5] = rot12_128(v[5]);
|
||||
v[6] = rot12_128(v[6]);
|
||||
v[7] = rot12_128(v[7]);
|
||||
v[4] = rot12_128(v[4]);
|
||||
v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
|
||||
v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
|
||||
v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
|
||||
v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
|
||||
v[0] = add_128(v[0], v[5]);
|
||||
v[1] = add_128(v[1], v[6]);
|
||||
v[2] = add_128(v[2], v[7]);
|
||||
v[3] = add_128(v[3], v[4]);
|
||||
v[15] = xor_128(v[15], v[0]);
|
||||
v[12] = xor_128(v[12], v[1]);
|
||||
v[13] = xor_128(v[13], v[2]);
|
||||
v[14] = xor_128(v[14], v[3]);
|
||||
v[15] = rot8_128(v[15]);
|
||||
v[12] = rot8_128(v[12]);
|
||||
v[13] = rot8_128(v[13]);
|
||||
v[14] = rot8_128(v[14]);
|
||||
v[10] = add_128(v[10], v[15]);
|
||||
v[11] = add_128(v[11], v[12]);
|
||||
v[8] = add_128(v[8], v[13]);
|
||||
v[9] = add_128(v[9], v[14]);
|
||||
v[5] = xor_128(v[5], v[10]);
|
||||
v[6] = xor_128(v[6], v[11]);
|
||||
v[7] = xor_128(v[7], v[8]);
|
||||
v[4] = xor_128(v[4], v[9]);
|
||||
v[5] = rot7_128(v[5]);
|
||||
v[6] = rot7_128(v[6]);
|
||||
v[7] = rot7_128(v[7]);
|
||||
v[4] = rot7_128(v[4]);
|
||||
}
|
||||
|
||||
INLINE void transpose_vecs_128(uint32x4_t vecs[4]) {
|
||||
// Individually transpose the four 2x2 sub-matrices in each corner.
|
||||
uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]);
|
||||
uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]);
|
||||
|
||||
// Swap the top-right and bottom-left 2x2s (which just got transposed).
|
||||
vecs[0] =
|
||||
vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0]));
|
||||
vecs[1] =
|
||||
vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1]));
|
||||
vecs[2] =
|
||||
vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0]));
|
||||
vecs[3] =
|
||||
vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1]));
|
||||
}
|
||||
|
||||
INLINE void transpose_msg_vecs4(const uint8_t *const *inputs,
|
||||
size_t block_offset, uint32x4_t out[16]) {
|
||||
out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]);
|
||||
out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]);
|
||||
out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]);
|
||||
out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]);
|
||||
out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]);
|
||||
out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]);
|
||||
out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]);
|
||||
out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]);
|
||||
out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]);
|
||||
out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]);
|
||||
out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]);
|
||||
out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]);
|
||||
out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]);
|
||||
out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]);
|
||||
out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]);
|
||||
out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]);
|
||||
transpose_vecs_128(&out[0]);
|
||||
transpose_vecs_128(&out[4]);
|
||||
transpose_vecs_128(&out[8]);
|
||||
transpose_vecs_128(&out[12]);
|
||||
}
|
||||
|
||||
INLINE void load_counters4(uint64_t counter, bool increment_counter,
|
||||
uint32x4_t *out_low, uint32x4_t *out_high) {
|
||||
uint64_t mask = (increment_counter ? ~0 : 0);
|
||||
*out_low = set4(
|
||||
counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)),
|
||||
counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3)));
|
||||
*out_high = set4(
|
||||
counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)),
|
||||
counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3)));
|
||||
}
|
||||
|
||||
void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
||||
uint32x4_t h_vecs[8] = {
|
||||
set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]),
|
||||
set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]),
|
||||
};
|
||||
uint32x4_t counter_low_vec, counter_high_vec;
|
||||
load_counters4(counter, increment_counter, &counter_low_vec,
|
||||
&counter_high_vec);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
|
||||
for (size_t block = 0; block < blocks; block++) {
|
||||
if (block + 1 == blocks) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN);
|
||||
uint32x4_t block_flags_vec = set1_128(block_flags);
|
||||
uint32x4_t msg_vecs[16];
|
||||
transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
|
||||
|
||||
uint32x4_t v[16] = {
|
||||
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
|
||||
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
|
||||
set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]),
|
||||
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
|
||||
};
|
||||
round_fn4(v, msg_vecs, 0);
|
||||
round_fn4(v, msg_vecs, 1);
|
||||
round_fn4(v, msg_vecs, 2);
|
||||
round_fn4(v, msg_vecs, 3);
|
||||
round_fn4(v, msg_vecs, 4);
|
||||
round_fn4(v, msg_vecs, 5);
|
||||
round_fn4(v, msg_vecs, 6);
|
||||
h_vecs[0] = xor_128(v[0], v[8]);
|
||||
h_vecs[1] = xor_128(v[1], v[9]);
|
||||
h_vecs[2] = xor_128(v[2], v[10]);
|
||||
h_vecs[3] = xor_128(v[3], v[11]);
|
||||
h_vecs[4] = xor_128(v[4], v[12]);
|
||||
h_vecs[5] = xor_128(v[5], v[13]);
|
||||
h_vecs[6] = xor_128(v[6], v[14]);
|
||||
h_vecs[7] = xor_128(v[7], v[15]);
|
||||
|
||||
block_flags = flags;
|
||||
}
|
||||
|
||||
transpose_vecs_128(&h_vecs[0]);
|
||||
transpose_vecs_128(&h_vecs[4]);
|
||||
// The first four vecs now contain the first half of each output, and the
|
||||
// second four vecs contain the second half of each output.
|
||||
storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]);
|
||||
storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]);
|
||||
storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]);
|
||||
storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]);
|
||||
storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]);
|
||||
storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]);
|
||||
storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]);
|
||||
storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]);
|
||||
}
|
||||
|
||||
/*
|
||||
* ----------------------------------------------------------------------------
|
||||
* hash_many_neon
|
||||
* ----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
void blake3_compress_in_place_portable(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags);
|
||||
|
||||
INLINE void hash_one_neon(const uint8_t *input, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
uint8_t flags, uint8_t flags_start, uint8_t flags_end,
|
||||
uint8_t out[BLAKE3_OUT_LEN]) {
|
||||
uint32_t cv[8];
|
||||
memcpy(cv, key, BLAKE3_KEY_LEN);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
while (blocks > 0) {
|
||||
if (blocks == 1) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
// TODO: Implement compress_neon. However note that according to
|
||||
// https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227,
|
||||
// compress_neon might not be any faster than compress_portable.
|
||||
blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
|
||||
block_flags);
|
||||
input = &input[BLAKE3_BLOCK_LEN];
|
||||
blocks -= 1;
|
||||
block_flags = flags;
|
||||
}
|
||||
memcpy(out, cv, BLAKE3_OUT_LEN);
|
||||
}
|
||||
|
||||
void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out) {
|
||||
while (num_inputs >= 4) {
|
||||
blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags,
|
||||
flags_start, flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += 4;
|
||||
}
|
||||
inputs += 4;
|
||||
num_inputs -= 4;
|
||||
out = &out[4 * BLAKE3_OUT_LEN];
|
||||
}
|
||||
while (num_inputs > 0) {
|
||||
hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start,
|
||||
flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += 1;
|
||||
}
|
||||
inputs += 1;
|
||||
num_inputs -= 1;
|
||||
out = &out[BLAKE3_OUT_LEN];
|
||||
}
|
||||
}
|
||||
160
src/crypto/blake3/blake3_portable.c
Normal file
160
src/crypto/blake3/blake3_portable.c
Normal file
@ -0,0 +1,160 @@
|
||||
#include "blake3_impl.h"
|
||||
#include <string.h>
|
||||
|
||||
INLINE uint32_t rotr32(uint32_t w, uint32_t c) {
|
||||
return (w >> c) | (w << (32 - c));
|
||||
}
|
||||
|
||||
INLINE void g(uint32_t *state, size_t a, size_t b, size_t c, size_t d,
|
||||
uint32_t x, uint32_t y) {
|
||||
state[a] = state[a] + state[b] + x;
|
||||
state[d] = rotr32(state[d] ^ state[a], 16);
|
||||
state[c] = state[c] + state[d];
|
||||
state[b] = rotr32(state[b] ^ state[c], 12);
|
||||
state[a] = state[a] + state[b] + y;
|
||||
state[d] = rotr32(state[d] ^ state[a], 8);
|
||||
state[c] = state[c] + state[d];
|
||||
state[b] = rotr32(state[b] ^ state[c], 7);
|
||||
}
|
||||
|
||||
INLINE void round_fn(uint32_t state[16], const uint32_t *msg, size_t round) {
|
||||
// Select the message schedule based on the round.
|
||||
const uint8_t *schedule = MSG_SCHEDULE[round];
|
||||
|
||||
// Mix the columns.
|
||||
g(state, 0, 4, 8, 12, msg[schedule[0]], msg[schedule[1]]);
|
||||
g(state, 1, 5, 9, 13, msg[schedule[2]], msg[schedule[3]]);
|
||||
g(state, 2, 6, 10, 14, msg[schedule[4]], msg[schedule[5]]);
|
||||
g(state, 3, 7, 11, 15, msg[schedule[6]], msg[schedule[7]]);
|
||||
|
||||
// Mix the rows.
|
||||
g(state, 0, 5, 10, 15, msg[schedule[8]], msg[schedule[9]]);
|
||||
g(state, 1, 6, 11, 12, msg[schedule[10]], msg[schedule[11]]);
|
||||
g(state, 2, 7, 8, 13, msg[schedule[12]], msg[schedule[13]]);
|
||||
g(state, 3, 4, 9, 14, msg[schedule[14]], msg[schedule[15]]);
|
||||
}
|
||||
|
||||
INLINE void compress_pre(uint32_t state[16], const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags) {
|
||||
uint32_t block_words[16];
|
||||
block_words[0] = load32(block + 4 * 0);
|
||||
block_words[1] = load32(block + 4 * 1);
|
||||
block_words[2] = load32(block + 4 * 2);
|
||||
block_words[3] = load32(block + 4 * 3);
|
||||
block_words[4] = load32(block + 4 * 4);
|
||||
block_words[5] = load32(block + 4 * 5);
|
||||
block_words[6] = load32(block + 4 * 6);
|
||||
block_words[7] = load32(block + 4 * 7);
|
||||
block_words[8] = load32(block + 4 * 8);
|
||||
block_words[9] = load32(block + 4 * 9);
|
||||
block_words[10] = load32(block + 4 * 10);
|
||||
block_words[11] = load32(block + 4 * 11);
|
||||
block_words[12] = load32(block + 4 * 12);
|
||||
block_words[13] = load32(block + 4 * 13);
|
||||
block_words[14] = load32(block + 4 * 14);
|
||||
block_words[15] = load32(block + 4 * 15);
|
||||
|
||||
state[0] = cv[0];
|
||||
state[1] = cv[1];
|
||||
state[2] = cv[2];
|
||||
state[3] = cv[3];
|
||||
state[4] = cv[4];
|
||||
state[5] = cv[5];
|
||||
state[6] = cv[6];
|
||||
state[7] = cv[7];
|
||||
state[8] = IV[0];
|
||||
state[9] = IV[1];
|
||||
state[10] = IV[2];
|
||||
state[11] = IV[3];
|
||||
state[12] = counter_low(counter);
|
||||
state[13] = counter_high(counter);
|
||||
state[14] = (uint32_t)block_len;
|
||||
state[15] = (uint32_t)flags;
|
||||
|
||||
round_fn(state, &block_words[0], 0);
|
||||
round_fn(state, &block_words[0], 1);
|
||||
round_fn(state, &block_words[0], 2);
|
||||
round_fn(state, &block_words[0], 3);
|
||||
round_fn(state, &block_words[0], 4);
|
||||
round_fn(state, &block_words[0], 5);
|
||||
round_fn(state, &block_words[0], 6);
|
||||
}
|
||||
|
||||
void blake3_compress_in_place_portable(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
uint32_t state[16];
|
||||
compress_pre(state, cv, block, block_len, counter, flags);
|
||||
cv[0] = state[0] ^ state[8];
|
||||
cv[1] = state[1] ^ state[9];
|
||||
cv[2] = state[2] ^ state[10];
|
||||
cv[3] = state[3] ^ state[11];
|
||||
cv[4] = state[4] ^ state[12];
|
||||
cv[5] = state[5] ^ state[13];
|
||||
cv[6] = state[6] ^ state[14];
|
||||
cv[7] = state[7] ^ state[15];
|
||||
}
|
||||
|
||||
void blake3_compress_xof_portable(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]) {
|
||||
uint32_t state[16];
|
||||
compress_pre(state, cv, block, block_len, counter, flags);
|
||||
|
||||
store32(&out[0 * 4], state[0] ^ state[8]);
|
||||
store32(&out[1 * 4], state[1] ^ state[9]);
|
||||
store32(&out[2 * 4], state[2] ^ state[10]);
|
||||
store32(&out[3 * 4], state[3] ^ state[11]);
|
||||
store32(&out[4 * 4], state[4] ^ state[12]);
|
||||
store32(&out[5 * 4], state[5] ^ state[13]);
|
||||
store32(&out[6 * 4], state[6] ^ state[14]);
|
||||
store32(&out[7 * 4], state[7] ^ state[15]);
|
||||
store32(&out[8 * 4], state[8] ^ cv[0]);
|
||||
store32(&out[9 * 4], state[9] ^ cv[1]);
|
||||
store32(&out[10 * 4], state[10] ^ cv[2]);
|
||||
store32(&out[11 * 4], state[11] ^ cv[3]);
|
||||
store32(&out[12 * 4], state[12] ^ cv[4]);
|
||||
store32(&out[13 * 4], state[13] ^ cv[5]);
|
||||
store32(&out[14 * 4], state[14] ^ cv[6]);
|
||||
store32(&out[15 * 4], state[15] ^ cv[7]);
|
||||
}
|
||||
|
||||
INLINE void hash_one_portable(const uint8_t *input, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
|
||||
uint32_t cv[8];
|
||||
memcpy(cv, key, BLAKE3_KEY_LEN);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
while (blocks > 0) {
|
||||
if (blocks == 1) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter,
|
||||
block_flags);
|
||||
input = &input[BLAKE3_BLOCK_LEN];
|
||||
blocks -= 1;
|
||||
block_flags = flags;
|
||||
}
|
||||
store_cv_words(out, cv);
|
||||
}
|
||||
|
||||
void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out) {
|
||||
while (num_inputs > 0) {
|
||||
hash_one_portable(inputs[0], blocks, key, counter, flags, flags_start,
|
||||
flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += 1;
|
||||
}
|
||||
inputs += 1;
|
||||
num_inputs -= 1;
|
||||
out = &out[BLAKE3_OUT_LEN];
|
||||
}
|
||||
}
|
||||
565
src/crypto/blake3/blake3_sse2.c
Normal file
565
src/crypto/blake3/blake3_sse2.c
Normal file
@ -0,0 +1,565 @@
|
||||
#include "blake3_impl.h"
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
#define DEGREE 4
|
||||
|
||||
#define _mm_shuffle_ps2(a, b, c) \
|
||||
(_mm_castps_si128( \
|
||||
_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
|
||||
|
||||
INLINE __m128i loadu(const uint8_t src[16]) {
|
||||
return _mm_loadu_si128((const __m128i *)src);
|
||||
}
|
||||
|
||||
INLINE void storeu(__m128i src, uint8_t dest[16]) {
|
||||
_mm_storeu_si128((__m128i *)dest, src);
|
||||
}
|
||||
|
||||
INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
|
||||
|
||||
// Note that clang-format doesn't like the name "xor" for some reason.
|
||||
INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
|
||||
|
||||
INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
|
||||
|
||||
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
|
||||
return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
|
||||
}
|
||||
|
||||
INLINE __m128i rot16(__m128i x) {
|
||||
return _mm_shufflehi_epi16(_mm_shufflelo_epi16(x, 0xB1), 0xB1);
|
||||
}
|
||||
|
||||
INLINE __m128i rot12(__m128i x) {
|
||||
return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
|
||||
}
|
||||
|
||||
INLINE __m128i rot8(__m128i x) {
|
||||
return xorv(_mm_srli_epi32(x, 8), _mm_slli_epi32(x, 32 - 8));
|
||||
}
|
||||
|
||||
INLINE __m128i rot7(__m128i x) {
|
||||
return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
|
||||
}
|
||||
|
||||
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
|
||||
__m128i m) {
|
||||
*row0 = addv(addv(*row0, m), *row1);
|
||||
*row3 = xorv(*row3, *row0);
|
||||
*row3 = rot16(*row3);
|
||||
*row2 = addv(*row2, *row3);
|
||||
*row1 = xorv(*row1, *row2);
|
||||
*row1 = rot12(*row1);
|
||||
}
|
||||
|
||||
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
|
||||
__m128i m) {
|
||||
*row0 = addv(addv(*row0, m), *row1);
|
||||
*row3 = xorv(*row3, *row0);
|
||||
*row3 = rot8(*row3);
|
||||
*row2 = addv(*row2, *row3);
|
||||
*row1 = xorv(*row1, *row2);
|
||||
*row1 = rot7(*row1);
|
||||
}
|
||||
|
||||
// Note the optimization here of leaving row1 as the unrotated row, rather than
|
||||
// row0. All the message loads below are adjusted to compensate for this. See
|
||||
// discussion at https://github.com/sneves/blake2-avx2/pull/4
|
||||
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
|
||||
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
|
||||
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
|
||||
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
}
|
||||
|
||||
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
|
||||
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
|
||||
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
|
||||
}
|
||||
|
||||
INLINE __m128i blend_epi16(__m128i a, __m128i b, const int imm8) {
|
||||
const __m128i bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01);
|
||||
__m128i mask = _mm_set1_epi16(imm8);
|
||||
mask = _mm_and_si128(mask, bits);
|
||||
mask = _mm_cmpeq_epi16(mask, bits);
|
||||
return _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a));
|
||||
}
|
||||
|
||||
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags) {
|
||||
rows[0] = loadu((uint8_t *)&cv[0]);
|
||||
rows[1] = loadu((uint8_t *)&cv[4]);
|
||||
rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
|
||||
rows[3] = set4(counter_low(counter), counter_high(counter),
|
||||
(uint32_t)block_len, (uint32_t)flags);
|
||||
|
||||
__m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
|
||||
__m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
|
||||
__m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
|
||||
__m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
|
||||
|
||||
__m128i t0, t1, t2, t3, tt;
|
||||
|
||||
// Round 1. The first round permutes the message words from the original
|
||||
// input order, into the groups that get mixed in parallel.
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
|
||||
t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
|
||||
t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 2. This round and all following rounds apply a fixed permutation
|
||||
// to the message words from the round before.
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 3
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 4
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 5
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 6
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 7
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
}
|
||||
|
||||
void blake3_compress_in_place_sse2(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
__m128i rows[4];
|
||||
compress_pre(rows, cv, block, block_len, counter, flags);
|
||||
storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
|
||||
storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
|
||||
}
|
||||
|
||||
void blake3_compress_xof_sse2(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]) {
|
||||
__m128i rows[4];
|
||||
compress_pre(rows, cv, block, block_len, counter, flags);
|
||||
storeu(xorv(rows[0], rows[2]), &out[0]);
|
||||
storeu(xorv(rows[1], rows[3]), &out[16]);
|
||||
storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
|
||||
storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
|
||||
}
|
||||
|
||||
INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
|
||||
v[0] = addv(v[0], v[4]);
|
||||
v[1] = addv(v[1], v[5]);
|
||||
v[2] = addv(v[2], v[6]);
|
||||
v[3] = addv(v[3], v[7]);
|
||||
v[12] = xorv(v[12], v[0]);
|
||||
v[13] = xorv(v[13], v[1]);
|
||||
v[14] = xorv(v[14], v[2]);
|
||||
v[15] = xorv(v[15], v[3]);
|
||||
v[12] = rot16(v[12]);
|
||||
v[13] = rot16(v[13]);
|
||||
v[14] = rot16(v[14]);
|
||||
v[15] = rot16(v[15]);
|
||||
v[8] = addv(v[8], v[12]);
|
||||
v[9] = addv(v[9], v[13]);
|
||||
v[10] = addv(v[10], v[14]);
|
||||
v[11] = addv(v[11], v[15]);
|
||||
v[4] = xorv(v[4], v[8]);
|
||||
v[5] = xorv(v[5], v[9]);
|
||||
v[6] = xorv(v[6], v[10]);
|
||||
v[7] = xorv(v[7], v[11]);
|
||||
v[4] = rot12(v[4]);
|
||||
v[5] = rot12(v[5]);
|
||||
v[6] = rot12(v[6]);
|
||||
v[7] = rot12(v[7]);
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
|
||||
v[0] = addv(v[0], v[4]);
|
||||
v[1] = addv(v[1], v[5]);
|
||||
v[2] = addv(v[2], v[6]);
|
||||
v[3] = addv(v[3], v[7]);
|
||||
v[12] = xorv(v[12], v[0]);
|
||||
v[13] = xorv(v[13], v[1]);
|
||||
v[14] = xorv(v[14], v[2]);
|
||||
v[15] = xorv(v[15], v[3]);
|
||||
v[12] = rot8(v[12]);
|
||||
v[13] = rot8(v[13]);
|
||||
v[14] = rot8(v[14]);
|
||||
v[15] = rot8(v[15]);
|
||||
v[8] = addv(v[8], v[12]);
|
||||
v[9] = addv(v[9], v[13]);
|
||||
v[10] = addv(v[10], v[14]);
|
||||
v[11] = addv(v[11], v[15]);
|
||||
v[4] = xorv(v[4], v[8]);
|
||||
v[5] = xorv(v[5], v[9]);
|
||||
v[6] = xorv(v[6], v[10]);
|
||||
v[7] = xorv(v[7], v[11]);
|
||||
v[4] = rot7(v[4]);
|
||||
v[5] = rot7(v[5]);
|
||||
v[6] = rot7(v[6]);
|
||||
v[7] = rot7(v[7]);
|
||||
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
|
||||
v[0] = addv(v[0], v[5]);
|
||||
v[1] = addv(v[1], v[6]);
|
||||
v[2] = addv(v[2], v[7]);
|
||||
v[3] = addv(v[3], v[4]);
|
||||
v[15] = xorv(v[15], v[0]);
|
||||
v[12] = xorv(v[12], v[1]);
|
||||
v[13] = xorv(v[13], v[2]);
|
||||
v[14] = xorv(v[14], v[3]);
|
||||
v[15] = rot16(v[15]);
|
||||
v[12] = rot16(v[12]);
|
||||
v[13] = rot16(v[13]);
|
||||
v[14] = rot16(v[14]);
|
||||
v[10] = addv(v[10], v[15]);
|
||||
v[11] = addv(v[11], v[12]);
|
||||
v[8] = addv(v[8], v[13]);
|
||||
v[9] = addv(v[9], v[14]);
|
||||
v[5] = xorv(v[5], v[10]);
|
||||
v[6] = xorv(v[6], v[11]);
|
||||
v[7] = xorv(v[7], v[8]);
|
||||
v[4] = xorv(v[4], v[9]);
|
||||
v[5] = rot12(v[5]);
|
||||
v[6] = rot12(v[6]);
|
||||
v[7] = rot12(v[7]);
|
||||
v[4] = rot12(v[4]);
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
|
||||
v[0] = addv(v[0], v[5]);
|
||||
v[1] = addv(v[1], v[6]);
|
||||
v[2] = addv(v[2], v[7]);
|
||||
v[3] = addv(v[3], v[4]);
|
||||
v[15] = xorv(v[15], v[0]);
|
||||
v[12] = xorv(v[12], v[1]);
|
||||
v[13] = xorv(v[13], v[2]);
|
||||
v[14] = xorv(v[14], v[3]);
|
||||
v[15] = rot8(v[15]);
|
||||
v[12] = rot8(v[12]);
|
||||
v[13] = rot8(v[13]);
|
||||
v[14] = rot8(v[14]);
|
||||
v[10] = addv(v[10], v[15]);
|
||||
v[11] = addv(v[11], v[12]);
|
||||
v[8] = addv(v[8], v[13]);
|
||||
v[9] = addv(v[9], v[14]);
|
||||
v[5] = xorv(v[5], v[10]);
|
||||
v[6] = xorv(v[6], v[11]);
|
||||
v[7] = xorv(v[7], v[8]);
|
||||
v[4] = xorv(v[4], v[9]);
|
||||
v[5] = rot7(v[5]);
|
||||
v[6] = rot7(v[6]);
|
||||
v[7] = rot7(v[7]);
|
||||
v[4] = rot7(v[4]);
|
||||
}
|
||||
|
||||
INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
|
||||
// Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
|
||||
// 22/33. Note that this doesn't split the vector into two lanes, as the
|
||||
// AVX2 counterparts do.
|
||||
__m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
|
||||
__m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
|
||||
__m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
|
||||
__m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
|
||||
|
||||
// Interleave 64-bit lanes.
|
||||
__m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
|
||||
__m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
|
||||
__m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
|
||||
__m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
|
||||
|
||||
vecs[0] = abcd_0;
|
||||
vecs[1] = abcd_1;
|
||||
vecs[2] = abcd_2;
|
||||
vecs[3] = abcd_3;
|
||||
}
|
||||
|
||||
INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
|
||||
size_t block_offset, __m128i out[16]) {
|
||||
out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
|
||||
out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
|
||||
out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
|
||||
out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
|
||||
for (size_t i = 0; i < 4; ++i) {
|
||||
_mm_prefetch(&inputs[i][block_offset + 256], _MM_HINT_T0);
|
||||
}
|
||||
transpose_vecs(&out[0]);
|
||||
transpose_vecs(&out[4]);
|
||||
transpose_vecs(&out[8]);
|
||||
transpose_vecs(&out[12]);
|
||||
}
|
||||
|
||||
INLINE void load_counters(uint64_t counter, bool increment_counter,
|
||||
__m128i *out_lo, __m128i *out_hi) {
|
||||
const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
|
||||
const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
|
||||
const __m128i add1 = _mm_and_si128(mask, add0);
|
||||
__m128i l = _mm_add_epi32(_mm_set1_epi32(counter), add1);
|
||||
__m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
|
||||
_mm_xor_si128( l, _mm_set1_epi32(0x80000000)));
|
||||
__m128i h = _mm_sub_epi32(_mm_set1_epi32(counter >> 32), carry);
|
||||
*out_lo = l;
|
||||
*out_hi = h;
|
||||
}
|
||||
|
||||
void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
||||
__m128i h_vecs[8] = {
|
||||
set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
|
||||
set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
|
||||
};
|
||||
__m128i counter_low_vec, counter_high_vec;
|
||||
load_counters(counter, increment_counter, &counter_low_vec,
|
||||
&counter_high_vec);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
|
||||
for (size_t block = 0; block < blocks; block++) {
|
||||
if (block + 1 == blocks) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
__m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
|
||||
__m128i block_flags_vec = set1(block_flags);
|
||||
__m128i msg_vecs[16];
|
||||
transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
|
||||
|
||||
__m128i v[16] = {
|
||||
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
|
||||
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
|
||||
set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
|
||||
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
|
||||
};
|
||||
round_fn(v, msg_vecs, 0);
|
||||
round_fn(v, msg_vecs, 1);
|
||||
round_fn(v, msg_vecs, 2);
|
||||
round_fn(v, msg_vecs, 3);
|
||||
round_fn(v, msg_vecs, 4);
|
||||
round_fn(v, msg_vecs, 5);
|
||||
round_fn(v, msg_vecs, 6);
|
||||
h_vecs[0] = xorv(v[0], v[8]);
|
||||
h_vecs[1] = xorv(v[1], v[9]);
|
||||
h_vecs[2] = xorv(v[2], v[10]);
|
||||
h_vecs[3] = xorv(v[3], v[11]);
|
||||
h_vecs[4] = xorv(v[4], v[12]);
|
||||
h_vecs[5] = xorv(v[5], v[13]);
|
||||
h_vecs[6] = xorv(v[6], v[14]);
|
||||
h_vecs[7] = xorv(v[7], v[15]);
|
||||
|
||||
block_flags = flags;
|
||||
}
|
||||
|
||||
transpose_vecs(&h_vecs[0]);
|
||||
transpose_vecs(&h_vecs[4]);
|
||||
// The first four vecs now contain the first half of each output, and the
|
||||
// second four vecs contain the second half of each output.
|
||||
storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
|
||||
}
|
||||
|
||||
INLINE void hash_one_sse2(const uint8_t *input, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
|
||||
uint32_t cv[8];
|
||||
memcpy(cv, key, BLAKE3_KEY_LEN);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
while (blocks > 0) {
|
||||
if (blocks == 1) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
blake3_compress_in_place_sse2(cv, input, BLAKE3_BLOCK_LEN, counter,
|
||||
block_flags);
|
||||
input = &input[BLAKE3_BLOCK_LEN];
|
||||
blocks -= 1;
|
||||
block_flags = flags;
|
||||
}
|
||||
memcpy(out, cv, BLAKE3_OUT_LEN);
|
||||
}
|
||||
|
||||
void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out) {
|
||||
while (num_inputs >= DEGREE) {
|
||||
blake3_hash4_sse2(inputs, blocks, key, counter, increment_counter, flags,
|
||||
flags_start, flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += DEGREE;
|
||||
}
|
||||
inputs += DEGREE;
|
||||
num_inputs -= DEGREE;
|
||||
out = &out[DEGREE * BLAKE3_OUT_LEN];
|
||||
}
|
||||
while (num_inputs > 0) {
|
||||
hash_one_sse2(inputs[0], blocks, key, counter, flags, flags_start,
|
||||
flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += 1;
|
||||
}
|
||||
inputs += 1;
|
||||
num_inputs -= 1;
|
||||
out = &out[BLAKE3_OUT_LEN];
|
||||
}
|
||||
}
|
||||
2291
src/crypto/blake3/blake3_sse2_x86-64_unix.S
Normal file
2291
src/crypto/blake3/blake3_sse2_x86-64_unix.S
Normal file
File diff suppressed because it is too large
Load Diff
2332
src/crypto/blake3/blake3_sse2_x86-64_windows_gnu.S
Normal file
2332
src/crypto/blake3/blake3_sse2_x86-64_windows_gnu.S
Normal file
File diff suppressed because it is too large
Load Diff
2350
src/crypto/blake3/blake3_sse2_x86-64_windows_msvc.asm
Normal file
2350
src/crypto/blake3/blake3_sse2_x86-64_windows_msvc.asm
Normal file
File diff suppressed because it is too large
Load Diff
559
src/crypto/blake3/blake3_sse41.c
Normal file
559
src/crypto/blake3/blake3_sse41.c
Normal file
@ -0,0 +1,559 @@
|
||||
#include "blake3_impl.h"
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
#define DEGREE 4
|
||||
|
||||
#define _mm_shuffle_ps2(a, b, c) \
|
||||
(_mm_castps_si128( \
|
||||
_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))
|
||||
|
||||
INLINE __m128i loadu(const uint8_t src[16]) {
|
||||
return _mm_loadu_si128((const __m128i *)src);
|
||||
}
|
||||
|
||||
INLINE void storeu(__m128i src, uint8_t dest[16]) {
|
||||
_mm_storeu_si128((__m128i *)dest, src);
|
||||
}
|
||||
|
||||
INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }
|
||||
|
||||
// Note that clang-format doesn't like the name "xor" for some reason.
|
||||
INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }
|
||||
|
||||
INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }
|
||||
|
||||
INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
|
||||
return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
|
||||
}
|
||||
|
||||
INLINE __m128i rot16(__m128i x) {
|
||||
return _mm_shuffle_epi8(
|
||||
x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
|
||||
}
|
||||
|
||||
INLINE __m128i rot12(__m128i x) {
|
||||
return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
|
||||
}
|
||||
|
||||
INLINE __m128i rot8(__m128i x) {
|
||||
return _mm_shuffle_epi8(
|
||||
x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
|
||||
}
|
||||
|
||||
INLINE __m128i rot7(__m128i x) {
|
||||
return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
|
||||
}
|
||||
|
||||
INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
|
||||
__m128i m) {
|
||||
*row0 = addv(addv(*row0, m), *row1);
|
||||
*row3 = xorv(*row3, *row0);
|
||||
*row3 = rot16(*row3);
|
||||
*row2 = addv(*row2, *row3);
|
||||
*row1 = xorv(*row1, *row2);
|
||||
*row1 = rot12(*row1);
|
||||
}
|
||||
|
||||
INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
|
||||
__m128i m) {
|
||||
*row0 = addv(addv(*row0, m), *row1);
|
||||
*row3 = xorv(*row3, *row0);
|
||||
*row3 = rot8(*row3);
|
||||
*row2 = addv(*row2, *row3);
|
||||
*row1 = xorv(*row1, *row2);
|
||||
*row1 = rot7(*row1);
|
||||
}
|
||||
|
||||
// Note the optimization here of leaving row1 as the unrotated row, rather than
|
||||
// row0. All the message loads below are adjusted to compensate for this. See
|
||||
// discussion at https://github.com/sneves/blake2-avx2/pull/4
|
||||
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
|
||||
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
|
||||
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
|
||||
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
}
|
||||
|
||||
INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
|
||||
*row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
*row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
|
||||
*row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
|
||||
}
|
||||
|
||||
INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter, uint8_t flags) {
|
||||
rows[0] = loadu((uint8_t *)&cv[0]);
|
||||
rows[1] = loadu((uint8_t *)&cv[4]);
|
||||
rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
|
||||
rows[3] = set4(counter_low(counter), counter_high(counter),
|
||||
(uint32_t)block_len, (uint32_t)flags);
|
||||
|
||||
__m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
|
||||
__m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
|
||||
__m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
|
||||
__m128i m3 = loadu(&block[sizeof(__m128i) * 3]);
|
||||
|
||||
__m128i t0, t1, t2, t3, tt;
|
||||
|
||||
// Round 1. The first round permutes the message words from the original
|
||||
// input order, into the groups that get mixed in parallel.
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8
|
||||
t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9
|
||||
t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 2. This round and all following rounds apply a fixed permutation
|
||||
// to the message words from the round before.
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = _mm_blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = _mm_blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 3
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = _mm_blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = _mm_blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 4
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = _mm_blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = _mm_blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 5
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = _mm_blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = _mm_blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 6
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = _mm_blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = _mm_blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
m0 = t0;
|
||||
m1 = t1;
|
||||
m2 = t2;
|
||||
m3 = t3;
|
||||
|
||||
// Round 7
|
||||
t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
|
||||
t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
|
||||
t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
|
||||
tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
|
||||
t1 = _mm_blend_epi16(tt, t1, 0xCC);
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
|
||||
diagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
t2 = _mm_unpacklo_epi64(m3, m1);
|
||||
tt = _mm_blend_epi16(t2, m2, 0xC0);
|
||||
t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
|
||||
g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
|
||||
t3 = _mm_unpackhi_epi32(m1, m3);
|
||||
tt = _mm_unpacklo_epi32(m2, t3);
|
||||
t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
|
||||
g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
|
||||
undiagonalize(&rows[0], &rows[2], &rows[3]);
|
||||
}
|
||||
|
||||
void blake3_compress_in_place_sse41(uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags) {
|
||||
__m128i rows[4];
|
||||
compress_pre(rows, cv, block, block_len, counter, flags);
|
||||
storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
|
||||
storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
|
||||
}
|
||||
|
||||
void blake3_compress_xof_sse41(const uint32_t cv[8],
|
||||
const uint8_t block[BLAKE3_BLOCK_LEN],
|
||||
uint8_t block_len, uint64_t counter,
|
||||
uint8_t flags, uint8_t out[64]) {
|
||||
__m128i rows[4];
|
||||
compress_pre(rows, cv, block, block_len, counter, flags);
|
||||
storeu(xorv(rows[0], rows[2]), &out[0]);
|
||||
storeu(xorv(rows[1], rows[3]), &out[16]);
|
||||
storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
|
||||
storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
|
||||
}
|
||||
|
||||
INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
|
||||
v[0] = addv(v[0], v[4]);
|
||||
v[1] = addv(v[1], v[5]);
|
||||
v[2] = addv(v[2], v[6]);
|
||||
v[3] = addv(v[3], v[7]);
|
||||
v[12] = xorv(v[12], v[0]);
|
||||
v[13] = xorv(v[13], v[1]);
|
||||
v[14] = xorv(v[14], v[2]);
|
||||
v[15] = xorv(v[15], v[3]);
|
||||
v[12] = rot16(v[12]);
|
||||
v[13] = rot16(v[13]);
|
||||
v[14] = rot16(v[14]);
|
||||
v[15] = rot16(v[15]);
|
||||
v[8] = addv(v[8], v[12]);
|
||||
v[9] = addv(v[9], v[13]);
|
||||
v[10] = addv(v[10], v[14]);
|
||||
v[11] = addv(v[11], v[15]);
|
||||
v[4] = xorv(v[4], v[8]);
|
||||
v[5] = xorv(v[5], v[9]);
|
||||
v[6] = xorv(v[6], v[10]);
|
||||
v[7] = xorv(v[7], v[11]);
|
||||
v[4] = rot12(v[4]);
|
||||
v[5] = rot12(v[5]);
|
||||
v[6] = rot12(v[6]);
|
||||
v[7] = rot12(v[7]);
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
|
||||
v[0] = addv(v[0], v[4]);
|
||||
v[1] = addv(v[1], v[5]);
|
||||
v[2] = addv(v[2], v[6]);
|
||||
v[3] = addv(v[3], v[7]);
|
||||
v[12] = xorv(v[12], v[0]);
|
||||
v[13] = xorv(v[13], v[1]);
|
||||
v[14] = xorv(v[14], v[2]);
|
||||
v[15] = xorv(v[15], v[3]);
|
||||
v[12] = rot8(v[12]);
|
||||
v[13] = rot8(v[13]);
|
||||
v[14] = rot8(v[14]);
|
||||
v[15] = rot8(v[15]);
|
||||
v[8] = addv(v[8], v[12]);
|
||||
v[9] = addv(v[9], v[13]);
|
||||
v[10] = addv(v[10], v[14]);
|
||||
v[11] = addv(v[11], v[15]);
|
||||
v[4] = xorv(v[4], v[8]);
|
||||
v[5] = xorv(v[5], v[9]);
|
||||
v[6] = xorv(v[6], v[10]);
|
||||
v[7] = xorv(v[7], v[11]);
|
||||
v[4] = rot7(v[4]);
|
||||
v[5] = rot7(v[5]);
|
||||
v[6] = rot7(v[6]);
|
||||
v[7] = rot7(v[7]);
|
||||
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
|
||||
v[0] = addv(v[0], v[5]);
|
||||
v[1] = addv(v[1], v[6]);
|
||||
v[2] = addv(v[2], v[7]);
|
||||
v[3] = addv(v[3], v[4]);
|
||||
v[15] = xorv(v[15], v[0]);
|
||||
v[12] = xorv(v[12], v[1]);
|
||||
v[13] = xorv(v[13], v[2]);
|
||||
v[14] = xorv(v[14], v[3]);
|
||||
v[15] = rot16(v[15]);
|
||||
v[12] = rot16(v[12]);
|
||||
v[13] = rot16(v[13]);
|
||||
v[14] = rot16(v[14]);
|
||||
v[10] = addv(v[10], v[15]);
|
||||
v[11] = addv(v[11], v[12]);
|
||||
v[8] = addv(v[8], v[13]);
|
||||
v[9] = addv(v[9], v[14]);
|
||||
v[5] = xorv(v[5], v[10]);
|
||||
v[6] = xorv(v[6], v[11]);
|
||||
v[7] = xorv(v[7], v[8]);
|
||||
v[4] = xorv(v[4], v[9]);
|
||||
v[5] = rot12(v[5]);
|
||||
v[6] = rot12(v[6]);
|
||||
v[7] = rot12(v[7]);
|
||||
v[4] = rot12(v[4]);
|
||||
v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
|
||||
v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
|
||||
v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
|
||||
v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
|
||||
v[0] = addv(v[0], v[5]);
|
||||
v[1] = addv(v[1], v[6]);
|
||||
v[2] = addv(v[2], v[7]);
|
||||
v[3] = addv(v[3], v[4]);
|
||||
v[15] = xorv(v[15], v[0]);
|
||||
v[12] = xorv(v[12], v[1]);
|
||||
v[13] = xorv(v[13], v[2]);
|
||||
v[14] = xorv(v[14], v[3]);
|
||||
v[15] = rot8(v[15]);
|
||||
v[12] = rot8(v[12]);
|
||||
v[13] = rot8(v[13]);
|
||||
v[14] = rot8(v[14]);
|
||||
v[10] = addv(v[10], v[15]);
|
||||
v[11] = addv(v[11], v[12]);
|
||||
v[8] = addv(v[8], v[13]);
|
||||
v[9] = addv(v[9], v[14]);
|
||||
v[5] = xorv(v[5], v[10]);
|
||||
v[6] = xorv(v[6], v[11]);
|
||||
v[7] = xorv(v[7], v[8]);
|
||||
v[4] = xorv(v[4], v[9]);
|
||||
v[5] = rot7(v[5]);
|
||||
v[6] = rot7(v[6]);
|
||||
v[7] = rot7(v[7]);
|
||||
v[4] = rot7(v[4]);
|
||||
}
|
||||
|
||||
INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
|
||||
// Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
|
||||
// 22/33. Note that this doesn't split the vector into two lanes, as the
|
||||
// AVX2 counterparts do.
|
||||
__m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
|
||||
__m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
|
||||
__m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
|
||||
__m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
|
||||
|
||||
// Interleave 64-bit lanes.
|
||||
__m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
|
||||
__m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
|
||||
__m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
|
||||
__m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);
|
||||
|
||||
vecs[0] = abcd_0;
|
||||
vecs[1] = abcd_1;
|
||||
vecs[2] = abcd_2;
|
||||
vecs[3] = abcd_3;
|
||||
}
|
||||
|
||||
INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
|
||||
size_t block_offset, __m128i out[16]) {
|
||||
out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
|
||||
out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
|
||||
out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
|
||||
out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
|
||||
out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
|
||||
out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
|
||||
out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
|
||||
for (size_t i = 0; i < 4; ++i) {
|
||||
_mm_prefetch(&inputs[i][block_offset + 256], _MM_HINT_T0);
|
||||
}
|
||||
transpose_vecs(&out[0]);
|
||||
transpose_vecs(&out[4]);
|
||||
transpose_vecs(&out[8]);
|
||||
transpose_vecs(&out[12]);
|
||||
}
|
||||
|
||||
INLINE void load_counters(uint64_t counter, bool increment_counter,
|
||||
__m128i *out_lo, __m128i *out_hi) {
|
||||
const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
|
||||
const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
|
||||
const __m128i add1 = _mm_and_si128(mask, add0);
|
||||
__m128i l = _mm_add_epi32(_mm_set1_epi32(counter), add1);
|
||||
__m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)),
|
||||
_mm_xor_si128( l, _mm_set1_epi32(0x80000000)));
|
||||
__m128i h = _mm_sub_epi32(_mm_set1_epi32(counter >> 32), carry);
|
||||
*out_lo = l;
|
||||
*out_hi = h;
|
||||
}
|
||||
|
||||
void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
bool increment_counter, uint8_t flags,
|
||||
uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
|
||||
__m128i h_vecs[8] = {
|
||||
set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
|
||||
set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
|
||||
};
|
||||
__m128i counter_low_vec, counter_high_vec;
|
||||
load_counters(counter, increment_counter, &counter_low_vec,
|
||||
&counter_high_vec);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
|
||||
for (size_t block = 0; block < blocks; block++) {
|
||||
if (block + 1 == blocks) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
__m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
|
||||
__m128i block_flags_vec = set1(block_flags);
|
||||
__m128i msg_vecs[16];
|
||||
transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);
|
||||
|
||||
__m128i v[16] = {
|
||||
h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3],
|
||||
h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7],
|
||||
set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]),
|
||||
counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
|
||||
};
|
||||
round_fn(v, msg_vecs, 0);
|
||||
round_fn(v, msg_vecs, 1);
|
||||
round_fn(v, msg_vecs, 2);
|
||||
round_fn(v, msg_vecs, 3);
|
||||
round_fn(v, msg_vecs, 4);
|
||||
round_fn(v, msg_vecs, 5);
|
||||
round_fn(v, msg_vecs, 6);
|
||||
h_vecs[0] = xorv(v[0], v[8]);
|
||||
h_vecs[1] = xorv(v[1], v[9]);
|
||||
h_vecs[2] = xorv(v[2], v[10]);
|
||||
h_vecs[3] = xorv(v[3], v[11]);
|
||||
h_vecs[4] = xorv(v[4], v[12]);
|
||||
h_vecs[5] = xorv(v[5], v[13]);
|
||||
h_vecs[6] = xorv(v[6], v[14]);
|
||||
h_vecs[7] = xorv(v[7], v[15]);
|
||||
|
||||
block_flags = flags;
|
||||
}
|
||||
|
||||
transpose_vecs(&h_vecs[0]);
|
||||
transpose_vecs(&h_vecs[4]);
|
||||
// The first four vecs now contain the first half of each output, and the
|
||||
// second four vecs contain the second half of each output.
|
||||
storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
|
||||
storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
|
||||
}
|
||||
|
||||
INLINE void hash_one_sse41(const uint8_t *input, size_t blocks,
|
||||
const uint32_t key[8], uint64_t counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
|
||||
uint32_t cv[8];
|
||||
memcpy(cv, key, BLAKE3_KEY_LEN);
|
||||
uint8_t block_flags = flags | flags_start;
|
||||
while (blocks > 0) {
|
||||
if (blocks == 1) {
|
||||
block_flags |= flags_end;
|
||||
}
|
||||
blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter,
|
||||
block_flags);
|
||||
input = &input[BLAKE3_BLOCK_LEN];
|
||||
blocks -= 1;
|
||||
block_flags = flags;
|
||||
}
|
||||
memcpy(out, cv, BLAKE3_OUT_LEN);
|
||||
}
|
||||
|
||||
void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
|
||||
size_t blocks, const uint32_t key[8],
|
||||
uint64_t counter, bool increment_counter,
|
||||
uint8_t flags, uint8_t flags_start,
|
||||
uint8_t flags_end, uint8_t *out) {
|
||||
while (num_inputs >= DEGREE) {
|
||||
blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags,
|
||||
flags_start, flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += DEGREE;
|
||||
}
|
||||
inputs += DEGREE;
|
||||
num_inputs -= DEGREE;
|
||||
out = &out[DEGREE * BLAKE3_OUT_LEN];
|
||||
}
|
||||
while (num_inputs > 0) {
|
||||
hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start,
|
||||
flags_end, out);
|
||||
if (increment_counter) {
|
||||
counter += 1;
|
||||
}
|
||||
inputs += 1;
|
||||
num_inputs -= 1;
|
||||
out = &out[BLAKE3_OUT_LEN];
|
||||
}
|
||||
}
|
||||
2028
src/crypto/blake3/blake3_sse41_x86-64_unix.S
Normal file
2028
src/crypto/blake3/blake3_sse41_x86-64_unix.S
Normal file
File diff suppressed because it is too large
Load Diff
2069
src/crypto/blake3/blake3_sse41_x86-64_windows_gnu.S
Normal file
2069
src/crypto/blake3/blake3_sse41_x86-64_windows_gnu.S
Normal file
File diff suppressed because it is too large
Load Diff
2089
src/crypto/blake3/blake3_sse41_x86-64_windows_msvc.asm
Normal file
2089
src/crypto/blake3/blake3_sse41_x86-64_windows_msvc.asm
Normal file
File diff suppressed because it is too large
Load Diff
27
src/crypto/blake3/example.c
Normal file
27
src/crypto/blake3/example.c
Normal file
@ -0,0 +1,27 @@
|
||||
#include "blake3.h"
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
|
||||
int main() {
|
||||
// Initialize the hasher.
|
||||
blake3_hasher hasher;
|
||||
blake3_hasher_init(&hasher);
|
||||
|
||||
// Read input bytes from stdin.
|
||||
unsigned char buf[65536];
|
||||
ssize_t n;
|
||||
while ((n = read(STDIN_FILENO, buf, sizeof(buf))) > 0) {
|
||||
blake3_hasher_update(&hasher, buf, n);
|
||||
}
|
||||
|
||||
// Finalize the hash. BLAKE3_OUT_LEN is the default output length, 32 bytes.
|
||||
uint8_t output[BLAKE3_OUT_LEN];
|
||||
blake3_hasher_finalize(&hasher, output, BLAKE3_OUT_LEN);
|
||||
|
||||
// Print the hash as hexadecimal.
|
||||
for (size_t i = 0; i < BLAKE3_OUT_LEN; i++) {
|
||||
printf("%02x", output[i]);
|
||||
}
|
||||
printf("\n");
|
||||
return 0;
|
||||
}
|
||||
166
src/crypto/blake3/main.c
Normal file
166
src/crypto/blake3/main.c
Normal file
@ -0,0 +1,166 @@
|
||||
/*
|
||||
* This main file is intended for testing via `make test`. It does not build in
|
||||
* other settings. See README.md in this directory for examples of how to build
|
||||
* C code.
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <errno.h>
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "blake3.h"
|
||||
#include "blake3_impl.h"
|
||||
|
||||
#define HASH_MODE 0
|
||||
#define KEYED_HASH_MODE 1
|
||||
#define DERIVE_KEY_MODE 2
|
||||
|
||||
static void hex_char_value(uint8_t c, uint8_t *value, bool *valid) {
|
||||
if ('0' <= c && c <= '9') {
|
||||
*value = c - '0';
|
||||
*valid = true;
|
||||
} else if ('a' <= c && c <= 'f') {
|
||||
*value = 10 + c - 'a';
|
||||
*valid = true;
|
||||
} else {
|
||||
*valid = false;
|
||||
}
|
||||
}
|
||||
|
||||
static int parse_key(char *hex_key, uint8_t out[BLAKE3_KEY_LEN]) {
|
||||
size_t hex_len = strlen(hex_key);
|
||||
if (hex_len != 64) {
|
||||
fprintf(stderr, "Expected a 64-char hexadecimal key, got %zu chars.\n",
|
||||
hex_len);
|
||||
return 1;
|
||||
}
|
||||
for (size_t i = 0; i < 64; i++) {
|
||||
uint8_t value;
|
||||
bool valid;
|
||||
hex_char_value(hex_key[i], &value, &valid);
|
||||
if (!valid) {
|
||||
fprintf(stderr, "Invalid hex char.\n");
|
||||
return 1;
|
||||
}
|
||||
if (i % 2 == 0) {
|
||||
out[i / 2] = 0;
|
||||
value <<= 4;
|
||||
}
|
||||
out[i / 2] += value;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* A little repetition here */
|
||||
enum cpu_feature {
|
||||
SSE2 = 1 << 0,
|
||||
SSSE3 = 1 << 1,
|
||||
SSE41 = 1 << 2,
|
||||
AVX = 1 << 3,
|
||||
AVX2 = 1 << 4,
|
||||
AVX512F = 1 << 5,
|
||||
AVX512VL = 1 << 6,
|
||||
/* ... */
|
||||
UNDEFINED = 1 << 30
|
||||
};
|
||||
|
||||
extern enum cpu_feature g_cpu_features;
|
||||
enum cpu_feature get_cpu_features();
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
size_t out_len = BLAKE3_OUT_LEN;
|
||||
uint8_t key[BLAKE3_KEY_LEN];
|
||||
char *context = "";
|
||||
uint8_t mode = HASH_MODE;
|
||||
while (argc > 1) {
|
||||
if (argc <= 2) {
|
||||
fprintf(stderr, "Odd number of arguments.\n");
|
||||
return 1;
|
||||
}
|
||||
if (strcmp("--length", argv[1]) == 0) {
|
||||
char *endptr = NULL;
|
||||
errno = 0;
|
||||
unsigned long long out_len_ll = strtoull(argv[2], &endptr, 10);
|
||||
if (errno != 0 || out_len > SIZE_MAX || endptr == argv[2] ||
|
||||
*endptr != 0) {
|
||||
fprintf(stderr, "Bad length argument.\n");
|
||||
return 1;
|
||||
}
|
||||
out_len = (size_t)out_len_ll;
|
||||
} else if (strcmp("--keyed", argv[1]) == 0) {
|
||||
mode = KEYED_HASH_MODE;
|
||||
int ret = parse_key(argv[2], key);
|
||||
if (ret != 0) {
|
||||
return ret;
|
||||
}
|
||||
} else if (strcmp("--derive-key", argv[1]) == 0) {
|
||||
mode = DERIVE_KEY_MODE;
|
||||
context = argv[2];
|
||||
} else {
|
||||
fprintf(stderr, "Unknown flag.\n");
|
||||
return 1;
|
||||
}
|
||||
argc -= 2;
|
||||
argv += 2;
|
||||
}
|
||||
|
||||
/*
|
||||
* We're going to hash the input multiple times, so we need to buffer it all.
|
||||
* This is just for test cases, so go ahead and assume that the input is less
|
||||
* than 1 MiB.
|
||||
*/
|
||||
size_t buf_capacity = 1 << 20;
|
||||
uint8_t *buf = malloc(buf_capacity);
|
||||
assert(buf != NULL);
|
||||
size_t buf_len = 0;
|
||||
while (1) {
|
||||
size_t n = fread(&buf[buf_len], 1, buf_capacity - buf_len, stdin);
|
||||
if (n == 0) {
|
||||
break;
|
||||
}
|
||||
buf_len += n;
|
||||
assert(buf_len < buf_capacity);
|
||||
}
|
||||
|
||||
const int mask = get_cpu_features();
|
||||
int feature = 0;
|
||||
do {
|
||||
fprintf(stderr, "Testing 0x%08X\n", feature);
|
||||
g_cpu_features = feature;
|
||||
blake3_hasher hasher;
|
||||
switch (mode) {
|
||||
case HASH_MODE:
|
||||
blake3_hasher_init(&hasher);
|
||||
break;
|
||||
case KEYED_HASH_MODE:
|
||||
blake3_hasher_init_keyed(&hasher, key);
|
||||
break;
|
||||
case DERIVE_KEY_MODE:
|
||||
blake3_hasher_init_derive_key(&hasher, context);
|
||||
break;
|
||||
default:
|
||||
abort();
|
||||
}
|
||||
|
||||
blake3_hasher_update(&hasher, buf, buf_len);
|
||||
|
||||
/* TODO: An incremental output reader API to avoid this allocation. */
|
||||
uint8_t *out = malloc(out_len);
|
||||
if (out_len > 0 && out == NULL) {
|
||||
fprintf(stderr, "malloc() failed.\n");
|
||||
return 1;
|
||||
}
|
||||
blake3_hasher_finalize(&hasher, out, out_len);
|
||||
for (size_t i = 0; i < out_len; i++) {
|
||||
printf("%02x", out[i]);
|
||||
}
|
||||
printf("\n");
|
||||
free(out);
|
||||
feature = (feature - mask) & mask;
|
||||
} while (feature != 0);
|
||||
free(buf);
|
||||
return 0;
|
||||
}
|
||||
97
src/crypto/blake3/test.py
Normal file
97
src/crypto/blake3/test.py
Normal file
@ -0,0 +1,97 @@
|
||||
#! /usr/bin/env python3
|
||||
|
||||
from binascii import hexlify
|
||||
import json
|
||||
from os import path
|
||||
import subprocess
|
||||
|
||||
HERE = path.dirname(__file__)
|
||||
TEST_VECTORS_PATH = path.join(HERE, "..", "test_vectors", "test_vectors.json")
|
||||
TEST_VECTORS = json.load(open(TEST_VECTORS_PATH))
|
||||
|
||||
|
||||
def run_blake3(args, input):
|
||||
output = subprocess.run([path.join(HERE, "blake3")] + args,
|
||||
input=input,
|
||||
stdout=subprocess.PIPE,
|
||||
check=True)
|
||||
return output.stdout.decode().strip()
|
||||
|
||||
|
||||
# Fill the input with a repeating byte pattern. We use a cycle length of 251,
|
||||
# because that's the largets prime number less than 256. This makes it unlikely
|
||||
# to swapping any two adjacent input blocks or chunks will give the same
|
||||
# answer.
|
||||
def make_test_input(length):
|
||||
i = 0
|
||||
buf = bytearray()
|
||||
while len(buf) < length:
|
||||
buf.append(i)
|
||||
i = (i + 1) % 251
|
||||
return buf
|
||||
|
||||
|
||||
def main():
|
||||
for case in TEST_VECTORS["cases"]:
|
||||
input_len = case["input_len"]
|
||||
input = make_test_input(input_len)
|
||||
hex_key = hexlify(TEST_VECTORS["key"].encode())
|
||||
context_string = TEST_VECTORS["context_string"]
|
||||
expected_hash_xof = case["hash"]
|
||||
expected_hash = expected_hash_xof[:64]
|
||||
expected_keyed_hash_xof = case["keyed_hash"]
|
||||
expected_keyed_hash = expected_keyed_hash_xof[:64]
|
||||
expected_derive_key_xof = case["derive_key"]
|
||||
expected_derive_key = expected_derive_key_xof[:64]
|
||||
|
||||
# Test the default hash.
|
||||
test_hash = run_blake3([], input)
|
||||
for line in test_hash.splitlines():
|
||||
assert expected_hash == line, \
|
||||
"hash({}): {} != {}".format(input_len, expected_hash, line)
|
||||
|
||||
# Test the extended hash.
|
||||
xof_len = len(expected_hash_xof) // 2
|
||||
test_hash_xof = run_blake3(["--length", str(xof_len)], input)
|
||||
for line in test_hash_xof.splitlines():
|
||||
assert expected_hash_xof == line, \
|
||||
"hash_xof({}): {} != {}".format(
|
||||
input_len, expected_hash_xof, line)
|
||||
|
||||
# Test the default keyed hash.
|
||||
test_keyed_hash = run_blake3(["--keyed", hex_key], input)
|
||||
for line in test_keyed_hash.splitlines():
|
||||
assert expected_keyed_hash == line, \
|
||||
"keyed_hash({}): {} != {}".format(
|
||||
input_len, expected_keyed_hash, line)
|
||||
|
||||
# Test the extended keyed hash.
|
||||
xof_len = len(expected_keyed_hash_xof) // 2
|
||||
test_keyed_hash_xof = run_blake3(
|
||||
["--keyed", hex_key, "--length",
|
||||
str(xof_len)], input)
|
||||
for line in test_keyed_hash_xof.splitlines():
|
||||
assert expected_keyed_hash_xof == line, \
|
||||
"keyed_hash_xof({}): {} != {}".format(
|
||||
input_len, expected_keyed_hash_xof, line)
|
||||
|
||||
# Test the default derive key.
|
||||
test_derive_key = run_blake3(["--derive-key", context_string], input)
|
||||
for line in test_derive_key.splitlines():
|
||||
assert expected_derive_key == line, \
|
||||
"derive_key({}): {} != {}".format(
|
||||
input_len, expected_derive_key, line)
|
||||
|
||||
# Test the extended derive key.
|
||||
xof_len = len(expected_derive_key_xof) // 2
|
||||
test_derive_key_xof = run_blake3(
|
||||
["--derive-key", context_string, "--length",
|
||||
str(xof_len)], input)
|
||||
for line in test_derive_key_xof.splitlines():
|
||||
assert expected_derive_key_xof == line, \
|
||||
"derive_key_xof({}): {} != {}".format(
|
||||
input_len, expected_derive_key_xof, line)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
x
Reference in New Issue
Block a user