bitcoin/src/util/hasher.h
marcofleon 9c24cda72e refactor: Convert remaining instances from uint256 to Txid
These remaining miscellaneous changes were identified by commenting out
the `operator const uint256&` conversion and the `Compare(const uint256&)`
method from `transaction_identifier.h`.
2025-08-11 16:47:43 +01:00

131 lines
3.1 KiB
C++

// Copyright (c) 2019-present The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_UTIL_HASHER_H
#define BITCOIN_UTIL_HASHER_H
#include <crypto/common.h>
#include <crypto/siphash.h>
#include <primitives/transaction.h>
#include <span.h>
#include <uint256.h>
#include <concepts>
#include <cstdint>
#include <cstring>
class SaltedUint256Hasher
{
private:
/** Salt */
const uint64_t k0, k1;
public:
SaltedUint256Hasher();
size_t operator()(const uint256& hash) const {
return SipHashUint256(k0, k1, hash);
}
};
class SaltedTxidHasher
{
private:
/** Salt */
const uint64_t k0, k1;
public:
SaltedTxidHasher();
size_t operator()(const Txid& txid) const {
return SipHashUint256(k0, k1, txid.ToUint256());
}
};
class SaltedWtxidHasher
{
private:
/** Salt */
const uint64_t k0, k1;
public:
SaltedWtxidHasher();
size_t operator()(const Wtxid& wtxid) const {
return SipHashUint256(k0, k1, wtxid.ToUint256());
}
};
class SaltedOutpointHasher
{
private:
/** Salt */
const uint64_t k0, k1;
public:
SaltedOutpointHasher(bool deterministic = false);
/**
* Having the hash noexcept allows libstdc++'s unordered_map to recalculate
* the hash during rehash, so it does not have to cache the value. This
* reduces node's memory by sizeof(size_t). The required recalculation has
* a slight performance penalty (around 1.6%), but this is compensated by
* memory savings of about 9% which allow for a larger dbcache setting.
*
* @see https://gcc.gnu.org/onlinedocs/gcc-13.2.0/libstdc++/manual/manual/unordered_associative.html
*/
size_t operator()(const COutPoint& id) const noexcept {
return SipHashUint256Extra(k0, k1, id.hash.ToUint256(), id.n);
}
};
struct FilterHeaderHasher
{
size_t operator()(const uint256& hash) const { return ReadLE64(hash.begin()); }
};
/**
* We're hashing a nonce into the entries themselves, so we don't need extra
* blinding in the set hash computation.
*
* This may exhibit platform endian dependent behavior but because these are
* nonced hashes (random) and this state is only ever used locally it is safe.
* All that matters is local consistency.
*/
class SignatureCacheHasher
{
public:
template <uint8_t hash_select>
uint32_t operator()(const uint256& key) const
{
static_assert(hash_select <8, "SignatureCacheHasher only has 8 hashes available.");
uint32_t u;
std::memcpy(&u, key.begin()+4*hash_select, 4);
return u;
}
};
struct BlockHasher
{
// this used to call `GetCheapHash()` in uint256, which was later moved; the
// cheap hash function simply calls ReadLE64() however, so the end result is
// identical
size_t operator()(const uint256& hash) const { return ReadLE64(hash.begin()); }
};
class SaltedSipHasher
{
private:
/** Salt */
const uint64_t m_k0, m_k1;
public:
SaltedSipHasher();
size_t operator()(const std::span<const unsigned char>& script) const;
};
#endif // BITCOIN_UTIL_HASHER_H