Andrew Chow d2ccca253f
Merge bitcoin/bitcoin#26567: Wallet: estimate the size of signed inputs using descriptors
10546a569c6c96a5ec1b9708abf9ff5c8644f669 wallet: accurately account for the size of the witness stack (Antoine Poinsot)
9b7ec393b82ca9d7ada77d06e0835df0386a8b85 wallet: use descriptor satisfaction size to estimate inputs size (Antoine Poinsot)
8d870a98731e8db5ecc614bb5f7c064cbf30c7f4 script/signingprovider: introduce a MultiSigningProvider (Antoine Poinsot)
fa7c46b503f0b69630f55dc43021d2099e3515ba descriptor: introduce a method to get the satisfaction size (Antoine Poinsot)
bdba7667d2d65f31484760a8e8420c488fc5f801 miniscript: introduce a helper to get the maximum witness size (Antoine Poinsot)
4ab382c2cdb09fb4056711b4336807845cbe1ad5 miniscript: make GetStackSize independent of P2WSH context (Antoine Poinsot)

Pull request description:

  The wallet currently estimates the size of a signed input by doing a dry run of the signing logic. This is unnecessary since all outputs we can sign for can be represented by a descriptor, and we can derive the size of a satisfaction ("signature") directly from the descriptor itself.
  In addition, the current approach does not generalize well: dry runs of the signing logic are only possible for the most basic scripts. See for instance the discussion in #24149 around that.

  This introduces a method to get the maximum size of a satisfaction from a descriptor, and makes the wallet use that instead of the dry-run.

ACKs for top commit:
  sipa:
    utACK 10546a569c6c96a5ec1b9708abf9ff5c8644f669
  achow101:
    re-ACK 10546a569c6c96a5ec1b9708abf9ff5c8644f669

Tree-SHA512: 43ed1529fbd30af709d903c8c5063235e8c6a03b500bc8f144273d6184e23a53edf0fea9ef898ed57d8a40d73208b5d935cc73b94a24fad3ad3c63b3b2027174
2023-09-06 13:31:03 -04:00
..
2023-03-23 12:55:18 +01:00
2022-12-24 23:49:50 +00:00

Unit tests

The sources in this directory are unit test cases. Boost includes a unit testing framework, and since Bitcoin Core already uses Boost, it makes sense to simply use this framework rather than require developers to configure some other framework (we want as few impediments to creating unit tests as possible).

The build system is set up to compile an executable called test_bitcoin that runs all of the unit tests. The main source file for the test library is found in util/setup_common.cpp.

Compiling/running unit tests

Unit tests will be automatically compiled if dependencies were met in ./configure and tests weren't explicitly disabled.

After configuring, they can be run with make check.

To run the unit tests manually, launch src/test/test_bitcoin. To recompile after a test file was modified, run make and then run the test again. If you modify a non-test file, use make -C src/test to recompile only what's needed to run the unit tests.

To add more unit tests, add BOOST_AUTO_TEST_CASE functions to the existing .cpp files in the test/ directory or add new .cpp files that implement new BOOST_AUTO_TEST_SUITE sections.

To run the GUI unit tests manually, launch src/qt/test/test_bitcoin-qt

To add more GUI unit tests, add them to the src/qt/test/ directory and the src/qt/test/test_main.cpp file.

Running individual tests

test_bitcoin accepts the command line arguments from the boost framework. For example, to run just the getarg_tests suite of tests:

test_bitcoin --log_level=all --run_test=getarg_tests

log_level controls the verbosity of the test framework, which logs when a test case is entered, for example. test_bitcoin also accepts the command line arguments accepted by bitcoind. Use -- to separate both types of arguments:

test_bitcoin --log_level=all --run_test=getarg_tests -- -printtoconsole=1

The -printtoconsole=1 after the two dashes redirects the debug log, which would normally go to a file in the test datadir (BasicTestingSetup::m_path_root), to the standard terminal output.

... or to run just the doubledash test:

test_bitcoin --run_test=getarg_tests/doubledash

Run test_bitcoin --help for the full list.

Adding test cases

To add a new unit test file to our test suite you need to add the file to src/Makefile.test.include. The pattern is to create one test file for each class or source file for which you want to create unit tests. The file naming convention is <source_filename>_tests.cpp and such files should wrap their tests in a test suite called <source_filename>_tests. For an example of this pattern, see uint256_tests.cpp.

Logging and debugging in unit tests

make check will write to a log file foo_tests.cpp.log and display this file on failure. For running individual tests verbosely, refer to the section above.

To write to logs from unit tests you need to use specific message methods provided by Boost. The simplest is BOOST_TEST_MESSAGE.

For debugging you can launch the test_bitcoin executable with gdb or lldb and start debugging, just like you would with any other program:

gdb src/test/test_bitcoin

Segmentation faults

If you hit a segmentation fault during a test run, you can diagnose where the fault is happening by running gdb ./src/test/test_bitcoin and then using the bt command within gdb.

Another tool that can be used to resolve segmentation faults is valgrind.

If for whatever reason you want to produce a core dump file for this fault, you can do that as well. By default, the boost test runner will intercept system errors and not produce a core file. To bypass this, add --catch_system_errors=no to the test_bitcoin arguments and ensure that your ulimits are set properly (e.g. ulimit -c unlimited).

Running the tests and hitting a segmentation fault should now produce a file called core (on Linux platforms, the file name will likely depend on the contents of /proc/sys/kernel/core_pattern).

You can then explore the core dump using

gdb src/test/test_bitcoin core

(gbd) bt  # produce a backtrace for where a segfault occurred