MarcoFalke d1dc6b895f
Merge bitcoin/bitcoin#23780: refactor, test: update addrman_tests.cpp to use output from AddrMan::Good()
bf4f8171352e9b384b42c91da61dfc9c3ca89ed8 refactor: addrman_select test (josibake)
5a64dc018c04ce16202a8e58ce92d2657c0b1806 refactor: addrman_evictionworks test (josibake)
e281fccd8a80d7cd48c3b17d58fd4a8915e1e965 refactor: addrman_noevict test (josibake)
8bdd9240d4310aafa1332159355f106a8fcfc5c9 refactor: addrman_selecttriedcollisions test (josibake)

Pull request description:

  As a follow-up to #23713 , this PR refactors the remaining tests in `src/tests/addrman_tests.cpp` to use the output from `AddrMan::Good()` where appropriate.

ACKs for top commit:
  naumenkogs:
    ACK bf4f8171352e9b384b42c91da61dfc9c3ca89ed8
  mzumsande:
    Code Review ACK bf4f8171352e9b384b42c91da61dfc9c3ca89ed8

Tree-SHA512: 93cc127aecff42c1c174daa04911af7e3460a5c40ddf96952fe4a6ab86fa1ff22d66724326abb709008d7f9f79c26c55c6d62753c40059c9ac60f869507ec913
2021-12-20 09:20:34 +01:00
..
2021-11-12 12:05:00 -05:00
2021-11-09 17:42:13 +01:00
2021-11-01 14:20:56 +01:00
2021-11-29 17:59:44 -05:00
2021-09-16 18:02:55 -04:00
2021-11-29 17:59:44 -05:00

Unit tests

The sources in this directory are unit test cases. Boost includes a unit testing framework, and since Bitcoin Core already uses Boost, it makes sense to simply use this framework rather than require developers to configure some other framework (we want as few impediments to creating unit tests as possible).

The build system is set up to compile an executable called test_bitcoin that runs all of the unit tests. The main source file for the test library is found in util/setup_common.cpp.

Compiling/running unit tests

Unit tests will be automatically compiled if dependencies were met in ./configure and tests weren't explicitly disabled.

After configuring, they can be run with make check.

To run the unit tests manually, launch src/test/test_bitcoin. To recompile after a test file was modified, run make and then run the test again. If you modify a non-test file, use make -C src/test to recompile only what's needed to run the unit tests.

To add more unit tests, add BOOST_AUTO_TEST_CASE functions to the existing .cpp files in the test/ directory or add new .cpp files that implement new BOOST_AUTO_TEST_SUITE sections.

To run the GUI unit tests manually, launch src/qt/test/test_bitcoin-qt

To add more GUI unit tests, add them to the src/qt/test/ directory and the src/qt/test/test_main.cpp file.

Running individual tests

test_bitcoin has some built-in command-line arguments; for example, to run just the getarg_tests verbosely:

test_bitcoin --log_level=all --run_test=getarg_tests -- DEBUG_LOG_OUT

log_level controls the verbosity of the test framework, which logs when a test case is entered, for example. The DEBUG_LOG_OUT after the two dashes redirects the debug log, which would normally go to a file in the test datadir (BasicTestingSetup::m_path_root), to the standard terminal output.

... or to run just the doubledash test:

test_bitcoin --run_test=getarg_tests/doubledash

Run test_bitcoin --help for the full list.

Adding test cases

To add a new unit test file to our test suite you need to add the file to src/Makefile.test.include. The pattern is to create one test file for each class or source file for which you want to create unit tests. The file naming convention is <source_filename>_tests.cpp and such files should wrap their tests in a test suite called <source_filename>_tests. For an example of this pattern, see uint256_tests.cpp.

Logging and debugging in unit tests

make check will write to a log file foo_tests.cpp.log and display this file on failure. For running individual tests verbosely, refer to the section above.

To write to logs from unit tests you need to use specific message methods provided by Boost. The simplest is BOOST_TEST_MESSAGE.

For debugging you can launch the test_bitcoin executable with gdbor lldb and start debugging, just like you would with any other program:

gdb src/test/test_bitcoin

Segmentation faults

If you hit a segmentation fault during a test run, you can diagnose where the fault is happening by running gdb ./src/test/test_bitcoin and then using the bt command within gdb.

Another tool that can be used to resolve segmentation faults is valgrind.

If for whatever reason you want to produce a core dump file for this fault, you can do that as well. By default, the boost test runner will intercept system errors and not produce a core file. To bypass this, add --catch_system_errors=no to the test_bitcoin arguments and ensure that your ulimits are set properly (e.g. ulimit -c unlimited).

Running the tests and hitting a segmentation fault should now produce a file called core (on Linux platforms, the file name will likely depend on the contents of /proc/sys/kernel/core_pattern).

You can then explore the core dump using

gdb src/test/test_bitcoin core

(gbd) bt  # produce a backtrace for where a segfault occurred