mirror of
https://github.com/bitcoin/bitcoin.git
synced 2026-01-31 10:41:08 +00:00
This introduces a local RNG inside the SFL state, which is used to randomize various decisions inside the algorithm, in order to make it hard to create pathological clusters which predictably have bad performance. The decisions being randomized are: * When deciding what chunk to attempt to split, the queue order is randomized. * When deciding which dependency to split on, a uniformly random one is chosen among those with higher top feerate than bottom feerate within the chosen chunk. * When deciding which chunks to merge, a uniformly random one among those with the higher feerate difference is picked. * When merging two chunks, a uniformly random dependency between them is now activated. * When making the state topological, the queue of chunks to process is randomized.
1379 lines
56 KiB
C++
1379 lines
56 KiB
C++
// Copyright (c) The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <cluster_linearize.h>
|
|
#include <random.h>
|
|
#include <serialize.h>
|
|
#include <streams.h>
|
|
#include <test/fuzz/FuzzedDataProvider.h>
|
|
#include <test/fuzz/fuzz.h>
|
|
#include <test/util/cluster_linearize.h>
|
|
#include <util/bitset.h>
|
|
#include <util/feefrac.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
/*
|
|
* The tests in this file primarily cover the candidate finder classes and linearization algorithms.
|
|
*
|
|
* <----: An implementation (at the start of the line --) is tested in the test marked with *,
|
|
* possibly by comparison with other implementations (at the end of the line ->).
|
|
* <<---: The right side is implemented using the left side.
|
|
*
|
|
* +---------------------+ +-----------+
|
|
* | SpanningForestState | <<-------------------- | Linearize |
|
|
* +---------------------+ +-----------+
|
|
* | |
|
|
* | | ^^ PRODUCTION CODE
|
|
* | | ||
|
|
* ==============================================================================================
|
|
* | | ||
|
|
* |-clusterlin_sfl* | vv TEST CODE
|
|
* | |
|
|
* \------------------------------------\ |-clusterlin_linearize*
|
|
* | |
|
|
* v v
|
|
* +-----------------------+ +-----------------+
|
|
* | SimpleCandidateFinder | <<-------------------| SimpleLinearize |
|
|
* +-----------------------+ +-----------------+
|
|
* | |
|
|
* |-clusterlin_simple_finder* |-clusterlin_simple_linearize*
|
|
* v v
|
|
* +---------------------------+ +---------------------+
|
|
* | ExhaustiveCandidateFinder | | ExhaustiveLinearize |
|
|
* +---------------------------+ +---------------------+
|
|
*
|
|
* More tests are included for lower-level and related functions and classes:
|
|
* - DepGraph tests:
|
|
* - clusterlin_depgraph_sim
|
|
* - clusterlin_depgraph_serialization
|
|
* - clusterlin_components
|
|
* - ChunkLinearization and LinearizationChunking tests:
|
|
* - clusterlin_chunking
|
|
* - clusterlin_linearization_chunking
|
|
* - PostLinearize tests:
|
|
* - clusterlin_postlinearize
|
|
* - clusterlin_postlinearize_tree
|
|
* - clusterlin_postlinearize_moved_leaf
|
|
* - MergeLinearization tests:
|
|
* - clusterlin_merge
|
|
* - FixLinearization tests:
|
|
* - clusterlin_fix_linearization
|
|
* - MakeConnected tests (a test-only function):
|
|
* - clusterlin_make_connected
|
|
*/
|
|
|
|
using namespace cluster_linearize;
|
|
|
|
namespace {
|
|
|
|
/** A simple finder class for candidate sets (topologically-valid subsets with high feerate), only
|
|
* used by SimpleLinearize below. */
|
|
template<typename SetType>
|
|
class SimpleCandidateFinder
|
|
{
|
|
/** Internal dependency graph. */
|
|
const DepGraph<SetType>& m_depgraph;
|
|
/** Which transaction are left to include. */
|
|
SetType m_todo;
|
|
|
|
public:
|
|
/** Construct an SimpleCandidateFinder for a given graph. */
|
|
SimpleCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
|
|
m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
|
|
|
|
/** Remove a set of transactions from the set of to-be-linearized ones. */
|
|
void MarkDone(SetType select) noexcept { m_todo -= select; }
|
|
|
|
/** Determine whether unlinearized transactions remain. */
|
|
bool AllDone() const noexcept { return m_todo.None(); }
|
|
|
|
/** Find a candidate set using at most max_iterations iterations, and the number of iterations
|
|
* actually performed. If that number is less than max_iterations, then the result is optimal.
|
|
*
|
|
* Always returns a connected set of transactions.
|
|
*
|
|
* Complexity: O(N * M), where M is the number of connected topological subsets of the cluster.
|
|
* That number is bounded by M <= 2^(N-1).
|
|
*/
|
|
std::pair<SetInfo<SetType>, uint64_t> FindCandidateSet(uint64_t max_iterations) const noexcept
|
|
{
|
|
uint64_t iterations_left = max_iterations;
|
|
// Queue of work units. Each consists of:
|
|
// - inc: set of transactions definitely included
|
|
// - und: set of transactions that can be added to inc still
|
|
std::vector<std::pair<SetType, SetType>> queue;
|
|
// Initially we have just one queue element, with the entire graph in und.
|
|
queue.emplace_back(SetType{}, m_todo);
|
|
// Best solution so far. Initialize with the remaining ancestors of the first remaining
|
|
// transaction.
|
|
SetInfo best(m_depgraph, m_depgraph.Ancestors(m_todo.First()) & m_todo);
|
|
// Process the queue.
|
|
while (!queue.empty() && iterations_left) {
|
|
// Pop top element of the queue.
|
|
auto [inc, und] = queue.back();
|
|
queue.pop_back();
|
|
// Look for a transaction to consider adding/removing.
|
|
bool inc_none = inc.None();
|
|
for (auto split : und) {
|
|
// If inc is empty, consider any split transaction. Otherwise only consider
|
|
// transactions that share ancestry with inc so far (which means only connected
|
|
// sets will be considered).
|
|
if (inc_none || inc.Overlaps(m_depgraph.Ancestors(split))) {
|
|
--iterations_left;
|
|
// Add a queue entry with split included.
|
|
SetInfo new_inc(m_depgraph, inc | (m_todo & m_depgraph.Ancestors(split)));
|
|
queue.emplace_back(new_inc.transactions, und - new_inc.transactions);
|
|
// Add a queue entry with split excluded.
|
|
queue.emplace_back(inc, und - m_depgraph.Descendants(split));
|
|
// Update statistics to account for the candidate new_inc.
|
|
if (new_inc.feerate > best.feerate) best = new_inc;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return {std::move(best), max_iterations - iterations_left};
|
|
}
|
|
};
|
|
|
|
/** A very simple finder class for optimal candidate sets, which tries every subset.
|
|
*
|
|
* It is even simpler than SimpleCandidateFinder, and exists just to help test the correctness of
|
|
* SimpleCandidateFinder, so that it can be used in SimpleLinearize, which is then used to test the
|
|
* correctness of Linearize.
|
|
*/
|
|
template<typename SetType>
|
|
class ExhaustiveCandidateFinder
|
|
{
|
|
/** Internal dependency graph. */
|
|
const DepGraph<SetType>& m_depgraph;
|
|
/** Which transaction are left to include. */
|
|
SetType m_todo;
|
|
|
|
public:
|
|
/** Construct an ExhaustiveCandidateFinder for a given graph. */
|
|
ExhaustiveCandidateFinder(const DepGraph<SetType>& depgraph LIFETIMEBOUND) noexcept :
|
|
m_depgraph(depgraph), m_todo{depgraph.Positions()} {}
|
|
|
|
/** Remove a set of transactions from the set of to-be-linearized ones. */
|
|
void MarkDone(SetType select) noexcept { m_todo -= select; }
|
|
|
|
/** Determine whether unlinearized transactions remain. */
|
|
bool AllDone() const noexcept { return m_todo.None(); }
|
|
|
|
/** Find the optimal remaining candidate set.
|
|
*
|
|
* Complexity: O(N * 2^N).
|
|
*/
|
|
SetInfo<SetType> FindCandidateSet() const noexcept
|
|
{
|
|
// Best solution so far.
|
|
SetInfo<SetType> best{m_todo, m_depgraph.FeeRate(m_todo)};
|
|
// The number of combinations to try.
|
|
uint64_t limit = (uint64_t{1} << m_todo.Count()) - 1;
|
|
// Try the transitive closure of every non-empty subset of m_todo.
|
|
for (uint64_t x = 1; x < limit; ++x) {
|
|
// If bit number b is set in x, then the remaining ancestors of the b'th remaining
|
|
// transaction in m_todo are included.
|
|
SetType txn;
|
|
auto x_shifted{x};
|
|
for (auto i : m_todo) {
|
|
if (x_shifted & 1) txn |= m_depgraph.Ancestors(i);
|
|
x_shifted >>= 1;
|
|
}
|
|
SetInfo cur(m_depgraph, txn & m_todo);
|
|
if (cur.feerate > best.feerate) best = cur;
|
|
}
|
|
return best;
|
|
}
|
|
};
|
|
|
|
/** A simple linearization algorithm.
|
|
*
|
|
* This matches Linearize() in interface and behavior, though with fewer optimizations, lacking
|
|
* the ability to pass in an existing linearization, and linearizing by simply finding the
|
|
* consecutive remaining highest-feerate topological subset using SimpleCandidateFinder.
|
|
*/
|
|
template<typename SetType>
|
|
std::pair<std::vector<DepGraphIndex>, bool> SimpleLinearize(const DepGraph<SetType>& depgraph, uint64_t max_iterations)
|
|
{
|
|
std::vector<DepGraphIndex> linearization;
|
|
SimpleCandidateFinder finder(depgraph);
|
|
SetType todo = depgraph.Positions();
|
|
bool optimal = true;
|
|
while (todo.Any()) {
|
|
auto [candidate, iterations_done] = finder.FindCandidateSet(max_iterations);
|
|
if (iterations_done == max_iterations) optimal = false;
|
|
depgraph.AppendTopo(linearization, candidate.transactions);
|
|
todo -= candidate.transactions;
|
|
finder.MarkDone(candidate.transactions);
|
|
max_iterations -= iterations_done;
|
|
}
|
|
return {std::move(linearization), optimal};
|
|
}
|
|
|
|
/** An even simpler linearization algorithm that tries all permutations.
|
|
*
|
|
* This roughly matches SimpleLinearize() (and Linearize) in interface and behavior, but always
|
|
* tries all topologically-valid transaction orderings, has no way to bound how much work it does,
|
|
* and always finds the optimal. With an O(n!) complexity, it should only be used for small
|
|
* clusters.
|
|
*/
|
|
template<typename SetType>
|
|
std::vector<DepGraphIndex> ExhaustiveLinearize(const DepGraph<SetType>& depgraph)
|
|
{
|
|
// The best linearization so far, and its chunking.
|
|
std::vector<DepGraphIndex> linearization;
|
|
std::vector<FeeFrac> chunking;
|
|
|
|
std::vector<DepGraphIndex> perm_linearization;
|
|
// Initialize with the lexicographically-first linearization.
|
|
for (DepGraphIndex i : depgraph.Positions()) perm_linearization.push_back(i);
|
|
// Iterate over all valid permutations.
|
|
do {
|
|
/** What prefix of perm_linearization is topological. */
|
|
DepGraphIndex topo_length{0};
|
|
TestBitSet perm_done;
|
|
while (topo_length < perm_linearization.size()) {
|
|
auto i = perm_linearization[topo_length];
|
|
perm_done.Set(i);
|
|
if (!depgraph.Ancestors(i).IsSubsetOf(perm_done)) break;
|
|
++topo_length;
|
|
}
|
|
if (topo_length == perm_linearization.size()) {
|
|
// If all of perm_linearization is topological, check if it is perhaps our best
|
|
// linearization so far.
|
|
auto perm_chunking = ChunkLinearization(depgraph, perm_linearization);
|
|
auto cmp = CompareChunks(perm_chunking, chunking);
|
|
// If the diagram is better, or if it is equal but with more chunks (because we
|
|
// prefer minimal chunks), consider this better.
|
|
if (linearization.empty() || cmp > 0 || (cmp == 0 && perm_chunking.size() > chunking.size())) {
|
|
linearization = perm_linearization;
|
|
chunking = perm_chunking;
|
|
}
|
|
} else {
|
|
// Otherwise, fast forward to the last permutation with the same non-topological
|
|
// prefix.
|
|
auto first_non_topo = perm_linearization.begin() + topo_length;
|
|
assert(std::is_sorted(first_non_topo + 1, perm_linearization.end()));
|
|
std::reverse(first_non_topo + 1, perm_linearization.end());
|
|
}
|
|
} while(std::next_permutation(perm_linearization.begin(), perm_linearization.end()));
|
|
|
|
return linearization;
|
|
}
|
|
|
|
|
|
/** Stitch connected components together in a DepGraph, guaranteeing its corresponding cluster is connected. */
|
|
template<typename BS>
|
|
void MakeConnected(DepGraph<BS>& depgraph)
|
|
{
|
|
auto todo = depgraph.Positions();
|
|
auto comp = depgraph.FindConnectedComponent(todo);
|
|
Assume(depgraph.IsConnected(comp));
|
|
todo -= comp;
|
|
while (todo.Any()) {
|
|
auto nextcomp = depgraph.FindConnectedComponent(todo);
|
|
Assume(depgraph.IsConnected(nextcomp));
|
|
depgraph.AddDependencies(BS::Singleton(comp.Last()), nextcomp.First());
|
|
todo -= nextcomp;
|
|
comp = nextcomp;
|
|
}
|
|
}
|
|
|
|
/** Given a dependency graph, and a todo set, read a topological subset of todo from reader. */
|
|
template<typename SetType>
|
|
SetType ReadTopologicalSet(const DepGraph<SetType>& depgraph, const SetType& todo, SpanReader& reader, bool non_empty)
|
|
{
|
|
// Read a bitmask from the fuzzing input. Add 1 if non_empty, so the mask is definitely not
|
|
// zero in that case.
|
|
uint64_t mask{0};
|
|
try {
|
|
reader >> VARINT(mask);
|
|
} catch(const std::ios_base::failure&) {}
|
|
if (mask != uint64_t(-1)) mask += non_empty;
|
|
|
|
SetType ret;
|
|
for (auto i : todo) {
|
|
if (!ret[i]) {
|
|
if (mask & 1) ret |= depgraph.Ancestors(i);
|
|
mask >>= 1;
|
|
}
|
|
}
|
|
ret &= todo;
|
|
|
|
// While mask starts off non-zero if non_empty is true, it is still possible that all its low
|
|
// bits are 0, and ret ends up being empty. As a last resort, use the in-todo ancestry of the
|
|
// first todo position.
|
|
if (non_empty && ret.None()) {
|
|
Assume(todo.Any());
|
|
ret = depgraph.Ancestors(todo.First()) & todo;
|
|
Assume(ret.Any());
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/** Given a dependency graph, construct any valid linearization for it, reading from a SpanReader. */
|
|
template<typename BS>
|
|
std::vector<DepGraphIndex> ReadLinearization(const DepGraph<BS>& depgraph, SpanReader& reader, bool topological=true)
|
|
{
|
|
std::vector<DepGraphIndex> linearization;
|
|
TestBitSet todo = depgraph.Positions();
|
|
// In every iteration one transaction is appended to linearization.
|
|
while (todo.Any()) {
|
|
// Compute the set of transactions to select from.
|
|
TestBitSet potential_next;
|
|
if (topological) {
|
|
// Find all transactions with no not-yet-included ancestors.
|
|
for (auto j : todo) {
|
|
if ((depgraph.Ancestors(j) & todo) == TestBitSet::Singleton(j)) {
|
|
potential_next.Set(j);
|
|
}
|
|
}
|
|
} else {
|
|
// Allow any element to be selected next, regardless of topology.
|
|
potential_next = todo;
|
|
}
|
|
// There must always be one (otherwise there is a cycle in the graph).
|
|
assert(potential_next.Any());
|
|
// Read a number from reader, and interpret it as index into potential_next.
|
|
uint64_t idx{0};
|
|
try {
|
|
reader >> VARINT(idx);
|
|
} catch (const std::ios_base::failure&) {}
|
|
idx %= potential_next.Count();
|
|
// Find out which transaction that corresponds to.
|
|
for (auto j : potential_next) {
|
|
if (idx == 0) {
|
|
// When found, add it to linearization and remove it from todo.
|
|
linearization.push_back(j);
|
|
assert(todo[j]);
|
|
todo.Reset(j);
|
|
break;
|
|
}
|
|
--idx;
|
|
}
|
|
}
|
|
return linearization;
|
|
}
|
|
|
|
/** Given a dependency graph, construct a tree-structured graph.
|
|
*
|
|
* Copies the nodes from the depgraph, but only keeps the first parent (even direction)
|
|
* or the first child (odd direction) for each transaction.
|
|
*/
|
|
template<typename BS>
|
|
DepGraph<BS> BuildTreeGraph(const DepGraph<BS>& depgraph, uint8_t direction)
|
|
{
|
|
DepGraph<BS> depgraph_tree;
|
|
for (DepGraphIndex i = 0; i < depgraph.PositionRange(); ++i) {
|
|
if (depgraph.Positions()[i]) {
|
|
depgraph_tree.AddTransaction(depgraph.FeeRate(i));
|
|
} else {
|
|
// For holes, add a dummy transaction which is deleted below, so that non-hole
|
|
// transactions retain their position.
|
|
depgraph_tree.AddTransaction(FeeFrac{});
|
|
}
|
|
}
|
|
depgraph_tree.RemoveTransactions(BS::Fill(depgraph.PositionRange()) - depgraph.Positions());
|
|
|
|
if (direction & 1) {
|
|
for (DepGraphIndex i : depgraph.Positions()) {
|
|
auto children = depgraph.GetReducedChildren(i);
|
|
if (children.Any()) {
|
|
depgraph_tree.AddDependencies(BS::Singleton(i), children.First());
|
|
}
|
|
}
|
|
} else {
|
|
for (DepGraphIndex i : depgraph.Positions()) {
|
|
auto parents = depgraph.GetReducedParents(i);
|
|
if (parents.Any()) {
|
|
depgraph_tree.AddDependencies(BS::Singleton(parents.First()), i);
|
|
}
|
|
}
|
|
}
|
|
|
|
return depgraph_tree;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
FUZZ_TARGET(clusterlin_depgraph_sim)
|
|
{
|
|
// Simulation test to verify the full behavior of DepGraph.
|
|
|
|
FuzzedDataProvider provider(buffer.data(), buffer.size());
|
|
|
|
/** Real DepGraph being tested. */
|
|
DepGraph<TestBitSet> real;
|
|
/** Simulated DepGraph (sim[i] is std::nullopt if position i does not exist; otherwise,
|
|
* sim[i]->first is its individual feerate, and sim[i]->second is its set of ancestors. */
|
|
std::array<std::optional<std::pair<FeeFrac, TestBitSet>>, TestBitSet::Size()> sim;
|
|
/** The number of non-nullopt position in sim. */
|
|
DepGraphIndex num_tx_sim{0};
|
|
|
|
/** Read a valid index of a transaction from the provider. */
|
|
auto idx_fn = [&]() {
|
|
auto offset = provider.ConsumeIntegralInRange<DepGraphIndex>(0, num_tx_sim - 1);
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if (!sim[i].has_value()) continue;
|
|
if (offset == 0) return i;
|
|
--offset;
|
|
}
|
|
assert(false);
|
|
return DepGraphIndex(-1);
|
|
};
|
|
|
|
/** Read a valid subset of the transactions from the provider. */
|
|
auto subset_fn = [&]() {
|
|
auto range = (uint64_t{1} << num_tx_sim) - 1;
|
|
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
|
|
auto mask_shifted = mask;
|
|
TestBitSet subset;
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if (!sim[i].has_value()) continue;
|
|
if (mask_shifted & 1) {
|
|
subset.Set(i);
|
|
}
|
|
mask_shifted >>= 1;
|
|
}
|
|
assert(mask_shifted == 0);
|
|
return subset;
|
|
};
|
|
|
|
/** Read any set of transactions from the provider (including unused positions). */
|
|
auto set_fn = [&]() {
|
|
auto range = (uint64_t{1} << sim.size()) - 1;
|
|
const auto mask = provider.ConsumeIntegralInRange<uint64_t>(0, range);
|
|
TestBitSet set;
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if ((mask >> i) & 1) {
|
|
set.Set(i);
|
|
}
|
|
}
|
|
return set;
|
|
};
|
|
|
|
/** Propagate ancestor information in sim. */
|
|
auto anc_update_fn = [&]() {
|
|
while (true) {
|
|
bool updates{false};
|
|
for (DepGraphIndex chl = 0; chl < sim.size(); ++chl) {
|
|
if (!sim[chl].has_value()) continue;
|
|
for (auto par : sim[chl]->second) {
|
|
if (!sim[chl]->second.IsSupersetOf(sim[par]->second)) {
|
|
sim[chl]->second |= sim[par]->second;
|
|
updates = true;
|
|
}
|
|
}
|
|
}
|
|
if (!updates) break;
|
|
}
|
|
};
|
|
|
|
/** Compare the state of transaction i in the simulation with the real one. */
|
|
auto check_fn = [&](DepGraphIndex i) {
|
|
// Compare used positions.
|
|
assert(real.Positions()[i] == sim[i].has_value());
|
|
if (sim[i].has_value()) {
|
|
// Compare feerate.
|
|
assert(real.FeeRate(i) == sim[i]->first);
|
|
// Compare ancestors (note that SanityCheck verifies correspondence between ancestors
|
|
// and descendants, so we can restrict ourselves to ancestors here).
|
|
assert(real.Ancestors(i) == sim[i]->second);
|
|
}
|
|
};
|
|
|
|
auto last_compaction_pos{real.PositionRange()};
|
|
|
|
LIMITED_WHILE(provider.remaining_bytes() > 0, 1000) {
|
|
int command = provider.ConsumeIntegral<uint8_t>() % 4;
|
|
while (true) {
|
|
// Iterate decreasing command until an applicable branch is found.
|
|
if (num_tx_sim < TestBitSet::Size() && command-- == 0) {
|
|
// AddTransaction.
|
|
auto fee = provider.ConsumeIntegralInRange<int64_t>(-0x8000000000000, 0x7ffffffffffff);
|
|
auto size = provider.ConsumeIntegralInRange<int32_t>(1, 0x3fffff);
|
|
FeeFrac feerate{fee, size};
|
|
// Apply to DepGraph.
|
|
auto idx = real.AddTransaction(feerate);
|
|
// Verify that the returned index is correct.
|
|
assert(!sim[idx].has_value());
|
|
for (DepGraphIndex i = 0; i < TestBitSet::Size(); ++i) {
|
|
if (!sim[i].has_value()) {
|
|
assert(idx == i);
|
|
break;
|
|
}
|
|
}
|
|
// Update sim.
|
|
sim[idx] = {feerate, TestBitSet::Singleton(idx)};
|
|
++num_tx_sim;
|
|
break;
|
|
} else if (num_tx_sim > 0 && command-- == 0) {
|
|
// AddDependencies.
|
|
DepGraphIndex child = idx_fn();
|
|
auto parents = subset_fn();
|
|
// Apply to DepGraph.
|
|
real.AddDependencies(parents, child);
|
|
// Apply to sim.
|
|
sim[child]->second |= parents;
|
|
break;
|
|
} else if (num_tx_sim > 0 && command-- == 0) {
|
|
// Remove transactions.
|
|
auto del = set_fn();
|
|
// Propagate all ancestry information before deleting anything in the simulation (as
|
|
// intermediary transactions may be deleted which impact connectivity).
|
|
anc_update_fn();
|
|
// Compare the state of the transactions being deleted.
|
|
for (auto i : del) check_fn(i);
|
|
// Apply to DepGraph.
|
|
real.RemoveTransactions(del);
|
|
// Apply to sim.
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) {
|
|
if (sim[i].has_value()) {
|
|
if (del[i]) {
|
|
--num_tx_sim;
|
|
sim[i] = std::nullopt;
|
|
} else {
|
|
sim[i]->second -= del;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
} else if (command-- == 0) {
|
|
// Compact.
|
|
const size_t mem_before{real.DynamicMemoryUsage()};
|
|
real.Compact();
|
|
const size_t mem_after{real.DynamicMemoryUsage()};
|
|
assert(real.PositionRange() < last_compaction_pos ? mem_after < mem_before : mem_after <= mem_before);
|
|
last_compaction_pos = real.PositionRange();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compare the real obtained depgraph against the simulation.
|
|
anc_update_fn();
|
|
for (DepGraphIndex i = 0; i < sim.size(); ++i) check_fn(i);
|
|
assert(real.TxCount() == num_tx_sim);
|
|
// Sanity check the result (which includes round-tripping serialization, if applicable).
|
|
SanityCheck(real);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_depgraph_serialization)
|
|
{
|
|
// Verify that any deserialized depgraph is acyclic and roundtrips to an identical depgraph.
|
|
|
|
// Construct a graph by deserializing.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
DepGraphIndex par_code{0}, chl_code{0};
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph) >> VARINT(par_code) >> VARINT(chl_code);
|
|
} catch (const std::ios_base::failure&) {}
|
|
SanityCheck(depgraph);
|
|
|
|
// Verify the graph is a DAG.
|
|
assert(depgraph.IsAcyclic());
|
|
|
|
// Introduce a cycle, and then test that IsAcyclic returns false.
|
|
if (depgraph.TxCount() < 2) return;
|
|
DepGraphIndex par(0), chl(0);
|
|
// Pick any transaction of depgraph as parent.
|
|
par_code %= depgraph.TxCount();
|
|
for (auto i : depgraph.Positions()) {
|
|
if (par_code == 0) {
|
|
par = i;
|
|
break;
|
|
}
|
|
--par_code;
|
|
}
|
|
// Pick any ancestor of par (excluding itself) as child, if any.
|
|
auto ancestors = depgraph.Ancestors(par) - TestBitSet::Singleton(par);
|
|
if (ancestors.None()) return;
|
|
chl_code %= ancestors.Count();
|
|
for (auto i : ancestors) {
|
|
if (chl_code == 0) {
|
|
chl = i;
|
|
break;
|
|
}
|
|
--chl_code;
|
|
}
|
|
// Add the cycle-introducing dependency.
|
|
depgraph.AddDependencies(TestBitSet::Singleton(par), chl);
|
|
// Check that we now detect a cycle.
|
|
assert(!depgraph.IsAcyclic());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_components)
|
|
{
|
|
// Verify the behavior of DepGraphs's FindConnectedComponent and IsConnected functions.
|
|
|
|
// Construct a depgraph.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
std::vector<DepGraphIndex> linearization;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
TestBitSet todo = depgraph.Positions();
|
|
while (todo.Any()) {
|
|
// Pick a transaction in todo, or nothing.
|
|
std::optional<DepGraphIndex> picked;
|
|
{
|
|
uint64_t picked_num{0};
|
|
try {
|
|
reader >> VARINT(picked_num);
|
|
} catch (const std::ios_base::failure&) {}
|
|
if (picked_num < todo.Size() && todo[picked_num]) {
|
|
picked = picked_num;
|
|
}
|
|
}
|
|
|
|
// Find a connected component inside todo, including picked if any.
|
|
auto component = picked ? depgraph.GetConnectedComponent(todo, *picked)
|
|
: depgraph.FindConnectedComponent(todo);
|
|
|
|
// The component must be a subset of todo and non-empty.
|
|
assert(component.IsSubsetOf(todo));
|
|
assert(component.Any());
|
|
|
|
// If picked was provided, the component must include it.
|
|
if (picked) assert(component[*picked]);
|
|
|
|
// If todo is the entire graph, and the entire graph is connected, then the component must
|
|
// be the entire graph.
|
|
if (todo == depgraph.Positions()) {
|
|
assert((component == todo) == depgraph.IsConnected());
|
|
}
|
|
|
|
// If subset is connected, then component must match subset.
|
|
assert((component == todo) == depgraph.IsConnected(todo));
|
|
|
|
// The component cannot have any ancestors or descendants outside of component but in todo.
|
|
for (auto i : component) {
|
|
assert((depgraph.Ancestors(i) & todo).IsSubsetOf(component));
|
|
assert((depgraph.Descendants(i) & todo).IsSubsetOf(component));
|
|
}
|
|
|
|
// Starting from any component element, we must be able to reach every element.
|
|
for (auto i : component) {
|
|
// Start with just i as reachable.
|
|
TestBitSet reachable = TestBitSet::Singleton(i);
|
|
// Add in-todo descendants and ancestors to reachable until it does not change anymore.
|
|
while (true) {
|
|
TestBitSet new_reachable = reachable;
|
|
for (auto j : new_reachable) {
|
|
new_reachable |= depgraph.Ancestors(j) & todo;
|
|
new_reachable |= depgraph.Descendants(j) & todo;
|
|
}
|
|
if (new_reachable == reachable) break;
|
|
reachable = new_reachable;
|
|
}
|
|
// Verify that the result is the entire component.
|
|
assert(component == reachable);
|
|
}
|
|
|
|
// Construct an arbitrary subset of todo.
|
|
uint64_t subset_bits{0};
|
|
try {
|
|
reader >> VARINT(subset_bits);
|
|
} catch (const std::ios_base::failure&) {}
|
|
TestBitSet subset;
|
|
for (DepGraphIndex i : depgraph.Positions()) {
|
|
if (todo[i]) {
|
|
if (subset_bits & 1) subset.Set(i);
|
|
subset_bits >>= 1;
|
|
}
|
|
}
|
|
// Which must be non-empty.
|
|
if (subset.None()) subset = TestBitSet::Singleton(todo.First());
|
|
// Remove it from todo.
|
|
todo -= subset;
|
|
}
|
|
|
|
// No components can be found in an empty subset.
|
|
assert(depgraph.FindConnectedComponent(todo).None());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_make_connected)
|
|
{
|
|
// Verify that MakeConnected makes graphs connected.
|
|
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
MakeConnected(depgraph);
|
|
SanityCheck(depgraph);
|
|
assert(depgraph.IsConnected());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_chunking)
|
|
{
|
|
// Verify the correctness of the ChunkLinearization function.
|
|
|
|
// Construct a graph by deserializing.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Read a valid linearization for depgraph.
|
|
auto linearization = ReadLinearization(depgraph, reader);
|
|
|
|
// Invoke the chunking function.
|
|
auto chunking = ChunkLinearization(depgraph, linearization);
|
|
|
|
// Verify that chunk feerates are monotonically non-increasing.
|
|
for (size_t i = 1; i < chunking.size(); ++i) {
|
|
assert(!(chunking[i] >> chunking[i - 1]));
|
|
}
|
|
|
|
// Naively recompute the chunks (each is the highest-feerate prefix of what remains).
|
|
auto todo = depgraph.Positions();
|
|
for (const auto& chunk_feerate : chunking) {
|
|
assert(todo.Any());
|
|
SetInfo<TestBitSet> accumulator, best;
|
|
for (DepGraphIndex idx : linearization) {
|
|
if (todo[idx]) {
|
|
accumulator.Set(depgraph, idx);
|
|
if (best.feerate.IsEmpty() || accumulator.feerate >> best.feerate) {
|
|
best = accumulator;
|
|
}
|
|
}
|
|
}
|
|
assert(chunk_feerate == best.feerate);
|
|
assert(best.transactions.IsSubsetOf(todo));
|
|
todo -= best.transactions;
|
|
}
|
|
assert(todo.None());
|
|
}
|
|
|
|
static constexpr auto MAX_SIMPLE_ITERATIONS = 300000;
|
|
|
|
FUZZ_TARGET(clusterlin_simple_finder)
|
|
{
|
|
// Verify that SimpleCandidateFinder works as expected by sanity checking the results
|
|
// and comparing them (if claimed to be optimal) against the sets found by
|
|
// ExhaustiveCandidateFinder.
|
|
//
|
|
// Note that SimpleCandidateFinder is only used in tests; the purpose of this fuzz test is to
|
|
// establish confidence in SimpleCandidateFinder, so that it can be used in SimpleLinearize,
|
|
// which is then used to test Linearize below.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Instantiate the SimpleCandidateFinder to be tested, and the ExhaustiveCandidateFinder it is
|
|
// being tested against.
|
|
SimpleCandidateFinder smp_finder(depgraph);
|
|
ExhaustiveCandidateFinder exh_finder(depgraph);
|
|
|
|
auto todo = depgraph.Positions();
|
|
while (todo.Any()) {
|
|
assert(!smp_finder.AllDone());
|
|
assert(!exh_finder.AllDone());
|
|
|
|
// Call SimpleCandidateFinder.
|
|
auto [found, iterations_done] = smp_finder.FindCandidateSet(MAX_SIMPLE_ITERATIONS);
|
|
bool optimal = (iterations_done != MAX_SIMPLE_ITERATIONS);
|
|
|
|
// Sanity check the result.
|
|
assert(iterations_done <= MAX_SIMPLE_ITERATIONS);
|
|
assert(found.transactions.Any());
|
|
assert(found.transactions.IsSubsetOf(todo));
|
|
assert(depgraph.FeeRate(found.transactions) == found.feerate);
|
|
// Check that it is topologically valid.
|
|
for (auto i : found.transactions) {
|
|
assert(found.transactions.IsSupersetOf(depgraph.Ancestors(i) & todo));
|
|
}
|
|
|
|
// At most 2^(N-1) iterations can be required: the number of non-empty connected subsets a
|
|
// graph with N transactions can have. If MAX_SIMPLE_ITERATIONS exceeds this number, the
|
|
// result is necessarily optimal.
|
|
assert(iterations_done <= (uint64_t{1} << (todo.Count() - 1)));
|
|
if (MAX_SIMPLE_ITERATIONS > (uint64_t{1} << (todo.Count() - 1))) assert(optimal);
|
|
|
|
// SimpleCandidateFinder only finds connected sets.
|
|
assert(depgraph.IsConnected(found.transactions));
|
|
|
|
// Perform further quality checks only if SimpleCandidateFinder claims an optimal result.
|
|
if (optimal) {
|
|
if (todo.Count() <= 12) {
|
|
// Compare with ExhaustiveCandidateFinder. This quickly gets computationally
|
|
// expensive for large clusters (O(2^n)), so only do it for sufficiently small ones.
|
|
auto exhaustive = exh_finder.FindCandidateSet();
|
|
assert(exhaustive.feerate == found.feerate);
|
|
}
|
|
|
|
// Compare with a non-empty topological set read from the fuzz input (comparing with an
|
|
// empty set is not interesting).
|
|
auto read_topo = ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/true);
|
|
assert(found.feerate >= depgraph.FeeRate(read_topo));
|
|
}
|
|
|
|
// Find a non-empty topologically valid subset of transactions to remove from the graph.
|
|
// Using an empty set would mean the next iteration is identical to the current one, and
|
|
// could cause an infinite loop.
|
|
auto del_set = ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/true);
|
|
todo -= del_set;
|
|
smp_finder.MarkDone(del_set);
|
|
exh_finder.MarkDone(del_set);
|
|
}
|
|
|
|
assert(smp_finder.AllDone());
|
|
assert(exh_finder.AllDone());
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_linearization_chunking)
|
|
{
|
|
// Verify the behavior of LinearizationChunking.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Retrieve a topologically-valid subset of depgraph (allowed to be empty, because the argument
|
|
// to LinearizationChunking::Intersect is allowed to be empty).
|
|
auto todo = depgraph.Positions();
|
|
auto subset = SetInfo(depgraph, ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/false));
|
|
|
|
// Retrieve a valid linearization for depgraph.
|
|
auto linearization = ReadLinearization(depgraph, reader);
|
|
|
|
// Construct a LinearizationChunking object, initially for the whole linearization.
|
|
LinearizationChunking chunking(depgraph, linearization);
|
|
|
|
// Incrementally remove transactions from the chunking object, and check various properties at
|
|
// every step.
|
|
while (todo.Any()) {
|
|
assert(chunking.NumChunksLeft() > 0);
|
|
|
|
// Construct linearization with just todo.
|
|
std::vector<DepGraphIndex> linearization_left;
|
|
for (auto i : linearization) {
|
|
if (todo[i]) linearization_left.push_back(i);
|
|
}
|
|
|
|
// Compute the chunking for linearization_left.
|
|
auto chunking_left = ChunkLinearization(depgraph, linearization_left);
|
|
|
|
// Verify that it matches the feerates of the chunks of chunking.
|
|
assert(chunking.NumChunksLeft() == chunking_left.size());
|
|
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
|
assert(chunking.GetChunk(i).feerate == chunking_left[i]);
|
|
}
|
|
|
|
// Check consistency of chunking.
|
|
TestBitSet combined;
|
|
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
|
const auto& chunk_info = chunking.GetChunk(i);
|
|
// Chunks must be non-empty.
|
|
assert(chunk_info.transactions.Any());
|
|
// Chunk feerates must be monotonically non-increasing.
|
|
if (i > 0) assert(!(chunk_info.feerate >> chunking.GetChunk(i - 1).feerate));
|
|
// Chunks must be a subset of what is left of the linearization.
|
|
assert(chunk_info.transactions.IsSubsetOf(todo));
|
|
// Chunks' claimed feerates must match their transactions' aggregate feerate.
|
|
assert(depgraph.FeeRate(chunk_info.transactions) == chunk_info.feerate);
|
|
// Chunks must be the highest-feerate remaining prefix.
|
|
SetInfo<TestBitSet> accumulator, best;
|
|
for (auto j : linearization) {
|
|
if (todo[j] && !combined[j]) {
|
|
accumulator.Set(depgraph, j);
|
|
if (best.feerate.IsEmpty() || accumulator.feerate > best.feerate) {
|
|
best = accumulator;
|
|
}
|
|
}
|
|
}
|
|
assert(best.transactions == chunk_info.transactions);
|
|
assert(best.feerate == chunk_info.feerate);
|
|
// Chunks cannot overlap.
|
|
assert(!chunk_info.transactions.Overlaps(combined));
|
|
combined |= chunk_info.transactions;
|
|
// Chunks must be topological.
|
|
for (auto idx : chunk_info.transactions) {
|
|
assert((depgraph.Ancestors(idx) & todo).IsSubsetOf(combined));
|
|
}
|
|
}
|
|
assert(combined == todo);
|
|
|
|
// Verify the expected properties of LinearizationChunking::IntersectPrefixes:
|
|
auto intersect = chunking.IntersectPrefixes(subset);
|
|
// - Intersecting again doesn't change the result.
|
|
assert(chunking.IntersectPrefixes(intersect) == intersect);
|
|
// - The intersection is topological.
|
|
TestBitSet intersect_anc;
|
|
for (auto idx : intersect.transactions) {
|
|
intersect_anc |= (depgraph.Ancestors(idx) & todo);
|
|
}
|
|
assert(intersect.transactions == intersect_anc);
|
|
// - The claimed intersection feerate matches its transactions.
|
|
assert(intersect.feerate == depgraph.FeeRate(intersect.transactions));
|
|
// - The intersection may only be empty if its input is empty.
|
|
assert(intersect.transactions.Any() == subset.transactions.Any());
|
|
// - The intersection feerate must be as high as the input.
|
|
assert(intersect.feerate >= subset.feerate);
|
|
// - No non-empty intersection between the intersection and a prefix of the chunks of the
|
|
// remainder of the linearization may be better than the intersection.
|
|
TestBitSet prefix;
|
|
for (DepGraphIndex i = 0; i < chunking.NumChunksLeft(); ++i) {
|
|
prefix |= chunking.GetChunk(i).transactions;
|
|
auto reintersect = SetInfo(depgraph, prefix & intersect.transactions);
|
|
if (!reintersect.feerate.IsEmpty()) {
|
|
assert(reintersect.feerate <= intersect.feerate);
|
|
}
|
|
}
|
|
|
|
// Find a non-empty topologically valid subset of transactions to remove from the graph.
|
|
// Using an empty set would mean the next iteration is identical to the current one, and
|
|
// could cause an infinite loop.
|
|
auto done = ReadTopologicalSet(depgraph, todo, reader, /*non_empty=*/true);
|
|
todo -= done;
|
|
chunking.MarkDone(done);
|
|
subset = SetInfo(depgraph, subset.transactions - done);
|
|
}
|
|
|
|
assert(chunking.NumChunksLeft() == 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_simple_linearize)
|
|
{
|
|
// Verify the behavior of SimpleLinearize(). Note that SimpleLinearize is only used in tests;
|
|
// the purpose of this fuzz test is to establish confidence in SimpleLinearize, so that it can
|
|
// be used to test the real Linearize function in the fuzz test below.
|
|
|
|
// Retrieve an iteration count and a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
uint64_t iter_count{0};
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> VARINT(iter_count) >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
iter_count %= MAX_SIMPLE_ITERATIONS;
|
|
|
|
// Invoke SimpleLinearize().
|
|
auto [linearization, optimal] = SimpleLinearize(depgraph, iter_count);
|
|
SanityCheck(depgraph, linearization);
|
|
auto simple_chunking = ChunkLinearization(depgraph, linearization);
|
|
|
|
// If the iteration count is sufficiently high, an optimal linearization must be found.
|
|
// SimpleLinearize on k transactions can take up to 2^(k-1) iterations (one per non-empty
|
|
// connected topologically valid subset), which sums over k=1..n to (2^n)-1.
|
|
const uint64_t n = depgraph.TxCount();
|
|
if (n <= 63 && (iter_count >> n)) {
|
|
assert(optimal);
|
|
}
|
|
|
|
// If SimpleLinearize claims optimal result, and the cluster is sufficiently small (there are
|
|
// n! linearizations), test that the result is as good as every valid linearization.
|
|
if (optimal && depgraph.TxCount() <= 8) {
|
|
auto exh_linearization = ExhaustiveLinearize(depgraph);
|
|
auto exh_chunking = ChunkLinearization(depgraph, exh_linearization);
|
|
auto cmp = CompareChunks(simple_chunking, exh_chunking);
|
|
assert(cmp == 0);
|
|
assert(simple_chunking.size() == exh_chunking.size());
|
|
}
|
|
|
|
if (optimal) {
|
|
// Compare with a linearization read from the fuzz input.
|
|
auto read = ReadLinearization(depgraph, reader);
|
|
auto read_chunking = ChunkLinearization(depgraph, read);
|
|
auto cmp = CompareChunks(simple_chunking, read_chunking);
|
|
assert(cmp >= 0);
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_sfl)
|
|
{
|
|
// Verify the individual steps of the SFL algorithm.
|
|
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
uint8_t flags{1};
|
|
uint64_t rng_seed{0};
|
|
try {
|
|
reader >> rng_seed >> flags >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
if (depgraph.TxCount() <= 1) return;
|
|
InsecureRandomContext rng(rng_seed);
|
|
/** Whether to make the depgraph connected. */
|
|
const bool make_connected = flags & 1;
|
|
/** Whether to load some input linearization into the state. */
|
|
const bool load_linearization = flags & 2;
|
|
/** Whether that input linearization is topological. */
|
|
const bool load_topological = load_linearization && (flags & 4);
|
|
|
|
// Initialize SFL state.
|
|
if (make_connected) MakeConnected(depgraph);
|
|
SpanningForestState sfl(depgraph, rng.rand64());
|
|
|
|
// Function to test the state.
|
|
std::vector<FeeFrac> last_diagram;
|
|
auto test_fn = [&](bool is_optimal = false) {
|
|
if (rng.randbits(4) == 0) {
|
|
// Perform sanity checks from time to time (too computationally expensive to do after
|
|
// every step).
|
|
sfl.SanityCheck(depgraph);
|
|
}
|
|
auto diagram = sfl.GetDiagram();
|
|
if (rng.randbits(4) == 0) {
|
|
// Verify that the diagram of GetLinearization() is at least as good as GetDiagram(),
|
|
// from time to time.
|
|
auto lin = sfl.GetLinearization();
|
|
auto lin_diagram = ChunkLinearization(depgraph, lin);
|
|
auto cmp_lin = CompareChunks(lin_diagram, diagram);
|
|
assert(cmp_lin >= 0);
|
|
// If we're in an allegedly optimal state, they must match.
|
|
if (is_optimal) assert(cmp_lin == 0);
|
|
}
|
|
// Verify that subsequent calls to GetDiagram() never get worse/incomparable.
|
|
if (!last_diagram.empty()) {
|
|
auto cmp = CompareChunks(diagram, last_diagram);
|
|
assert(cmp >= 0);
|
|
}
|
|
last_diagram = std::move(diagram);
|
|
};
|
|
|
|
if (load_linearization) {
|
|
auto input_lin = ReadLinearization(depgraph, reader, load_topological);
|
|
sfl.LoadLinearization(input_lin);
|
|
if (load_topological) {
|
|
// The diagram of the loaded linearization forms an initial lower bound on future
|
|
// diagrams.
|
|
last_diagram = ChunkLinearization(depgraph, input_lin);
|
|
} else {
|
|
// The input linearization may have been non-topological, so invoke MakeTopological to
|
|
// fix it still.
|
|
sfl.MakeTopological();
|
|
}
|
|
} else {
|
|
// Invoke MakeTopological to create an initial from-scratch topological state.
|
|
sfl.MakeTopological();
|
|
}
|
|
|
|
// Loop until optimal.
|
|
test_fn();
|
|
sfl.StartOptimizing();
|
|
while (true) {
|
|
test_fn();
|
|
if (!sfl.OptimizeStep()) break;
|
|
}
|
|
test_fn(/*is_optimal=*/true);
|
|
|
|
// Verify that optimality is reached within an expected amount of work. This protects against
|
|
// hypothetical bugs that hugely increase the amount of work needed to reach optimality.
|
|
assert(sfl.GetCost() <= MaxOptimalLinearizationIters(depgraph.TxCount()));
|
|
|
|
// The result must be as good as SimpleLinearize.
|
|
auto [simple_linearization, simple_optimal] = SimpleLinearize(depgraph, MAX_SIMPLE_ITERATIONS / 10);
|
|
auto simple_diagram = ChunkLinearization(depgraph, simple_linearization);
|
|
auto simple_cmp = CompareChunks(last_diagram, simple_diagram);
|
|
assert(simple_cmp >= 0);
|
|
if (simple_optimal) assert(simple_cmp == 0);
|
|
|
|
// We can compare with any arbitrary linearization, and the diagram must be at least as good as
|
|
// each.
|
|
for (int i = 0; i < 10; ++i) {
|
|
auto read_lin = ReadLinearization(depgraph, reader);
|
|
auto read_diagram = ChunkLinearization(depgraph, read_lin);
|
|
auto cmp = CompareChunks(last_diagram, read_diagram);
|
|
assert(cmp >= 0);
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_linearize)
|
|
{
|
|
// Verify the behavior of Linearize().
|
|
|
|
// Retrieve an RNG seed, an iteration count, a depgraph, and whether to make it connected from
|
|
// the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
uint64_t rng_seed{0};
|
|
uint64_t iter_count{0};
|
|
uint8_t make_connected{1};
|
|
try {
|
|
reader >> VARINT(iter_count) >> Using<DepGraphFormatter>(depgraph) >> rng_seed >> make_connected;
|
|
} catch (const std::ios_base::failure&) {}
|
|
// The most complicated graphs are connected ones (other ones just split up). Optionally force
|
|
// the graph to be connected.
|
|
if (make_connected) MakeConnected(depgraph);
|
|
|
|
// Optionally construct an old linearization for it.
|
|
std::vector<DepGraphIndex> old_linearization;
|
|
{
|
|
uint8_t have_old_linearization{0};
|
|
try {
|
|
reader >> have_old_linearization;
|
|
} catch(const std::ios_base::failure&) {}
|
|
if (have_old_linearization & 1) {
|
|
old_linearization = ReadLinearization(depgraph, reader);
|
|
SanityCheck(depgraph, old_linearization);
|
|
}
|
|
}
|
|
|
|
// Invoke Linearize().
|
|
iter_count &= 0x7ffff;
|
|
auto [linearization, optimal, cost] = Linearize(depgraph, iter_count, rng_seed, old_linearization);
|
|
SanityCheck(depgraph, linearization);
|
|
auto chunking = ChunkLinearization(depgraph, linearization);
|
|
|
|
// Linearization must always be as good as the old one, if provided.
|
|
if (!old_linearization.empty()) {
|
|
auto old_chunking = ChunkLinearization(depgraph, old_linearization);
|
|
auto cmp = CompareChunks(chunking, old_chunking);
|
|
assert(cmp >= 0);
|
|
}
|
|
|
|
// If the iteration count is sufficiently high, an optimal linearization must be found.
|
|
if (iter_count > MaxOptimalLinearizationIters(depgraph.TxCount())) {
|
|
assert(optimal);
|
|
}
|
|
|
|
// If Linearize claims optimal result, run quality tests.
|
|
if (optimal) {
|
|
// It must be as good as SimpleLinearize.
|
|
auto [simple_linearization, simple_optimal] = SimpleLinearize(depgraph, MAX_SIMPLE_ITERATIONS);
|
|
SanityCheck(depgraph, simple_linearization);
|
|
auto simple_chunking = ChunkLinearization(depgraph, simple_linearization);
|
|
auto cmp = CompareChunks(chunking, simple_chunking);
|
|
assert(cmp >= 0);
|
|
// If SimpleLinearize finds the optimal result too, they must be equal (if not,
|
|
// SimpleLinearize is broken).
|
|
if (simple_optimal) assert(cmp == 0);
|
|
|
|
// Temporarily disabled, as Linearize() currently does not guarantee minimal chunks, even
|
|
// when it reports an optimal result. This will be re-introduced in a later commit.
|
|
//
|
|
// // If simple_chunking is diagram-optimal, it cannot have more chunks than chunking (as
|
|
// // chunking is claimed to be optimal, which implies minimal chunks).
|
|
// if (cmp == 0) assert(chunking.size() >= simple_chunking.size());
|
|
|
|
// Compare with a linearization read from the fuzz input.
|
|
auto read = ReadLinearization(depgraph, reader);
|
|
auto read_chunking = ChunkLinearization(depgraph, read);
|
|
auto cmp_read = CompareChunks(chunking, read_chunking);
|
|
assert(cmp_read >= 0);
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_postlinearize)
|
|
{
|
|
// Verify expected properties of PostLinearize() on arbitrary linearizations.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Retrieve a linearization from the fuzz input.
|
|
std::vector<DepGraphIndex> linearization;
|
|
linearization = ReadLinearization(depgraph, reader);
|
|
SanityCheck(depgraph, linearization);
|
|
|
|
// Produce a post-processed version.
|
|
auto post_linearization = linearization;
|
|
PostLinearize(depgraph, post_linearization);
|
|
SanityCheck(depgraph, post_linearization);
|
|
|
|
// Compare diagrams: post-linearization cannot worsen anywhere.
|
|
auto chunking = ChunkLinearization(depgraph, linearization);
|
|
auto post_chunking = ChunkLinearization(depgraph, post_linearization);
|
|
auto cmp = CompareChunks(post_chunking, chunking);
|
|
assert(cmp >= 0);
|
|
|
|
// Run again, things can keep improving (and never get worse)
|
|
auto post_post_linearization = post_linearization;
|
|
PostLinearize(depgraph, post_post_linearization);
|
|
SanityCheck(depgraph, post_post_linearization);
|
|
auto post_post_chunking = ChunkLinearization(depgraph, post_post_linearization);
|
|
cmp = CompareChunks(post_post_chunking, post_chunking);
|
|
assert(cmp >= 0);
|
|
|
|
// The chunks that come out of postlinearizing are always connected.
|
|
LinearizationChunking linchunking(depgraph, post_linearization);
|
|
while (linchunking.NumChunksLeft()) {
|
|
assert(depgraph.IsConnected(linchunking.GetChunk(0).transactions));
|
|
linchunking.MarkDone(linchunking.GetChunk(0).transactions);
|
|
}
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_postlinearize_tree)
|
|
{
|
|
// Verify expected properties of PostLinearize() on linearizations of graphs that form either
|
|
// an upright or reverse tree structure.
|
|
|
|
// Construct a direction, RNG seed, and an arbitrary graph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
uint64_t rng_seed{0};
|
|
DepGraph<TestBitSet> depgraph_gen;
|
|
uint8_t direction{0};
|
|
try {
|
|
reader >> direction >> rng_seed >> Using<DepGraphFormatter>(depgraph_gen);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
auto depgraph_tree = BuildTreeGraph(depgraph_gen, direction);
|
|
|
|
// Retrieve a linearization from the fuzz input.
|
|
std::vector<DepGraphIndex> linearization;
|
|
linearization = ReadLinearization(depgraph_tree, reader);
|
|
SanityCheck(depgraph_tree, linearization);
|
|
|
|
// Produce a postlinearized version.
|
|
auto post_linearization = linearization;
|
|
PostLinearize(depgraph_tree, post_linearization);
|
|
SanityCheck(depgraph_tree, post_linearization);
|
|
|
|
// Compare diagrams.
|
|
auto chunking = ChunkLinearization(depgraph_tree, linearization);
|
|
auto post_chunking = ChunkLinearization(depgraph_tree, post_linearization);
|
|
auto cmp = CompareChunks(post_chunking, chunking);
|
|
assert(cmp >= 0);
|
|
|
|
// Verify that post-linearizing again does not change the diagram. The result must be identical
|
|
// as post_linearization ought to be optimal already with a tree-structured graph.
|
|
auto post_post_linearization = post_linearization;
|
|
PostLinearize(depgraph_tree, post_post_linearization);
|
|
SanityCheck(depgraph_tree, post_post_linearization);
|
|
auto post_post_chunking = ChunkLinearization(depgraph_tree, post_post_linearization);
|
|
auto cmp_post = CompareChunks(post_post_chunking, post_chunking);
|
|
assert(cmp_post == 0);
|
|
|
|
// Try to find an even better linearization directly. This must not change the diagram for the
|
|
// same reason.
|
|
auto [opt_linearization, _optimal, _cost] = Linearize(depgraph_tree, 100000, rng_seed, post_linearization);
|
|
auto opt_chunking = ChunkLinearization(depgraph_tree, opt_linearization);
|
|
auto cmp_opt = CompareChunks(opt_chunking, post_chunking);
|
|
assert(cmp_opt == 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_postlinearize_moved_leaf)
|
|
{
|
|
// Verify that taking an existing linearization, and moving a leaf to the back, potentially
|
|
// increasing its fee, and then post-linearizing, results in something as good as the
|
|
// original. This guarantees that in an RBF that replaces a transaction with one of the same
|
|
// size but higher fee, applying the "remove conflicts, append new transaction, postlinearize"
|
|
// process will never worsen linearization quality.
|
|
|
|
// Construct an arbitrary graph and a fee from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
int32_t fee_inc{0};
|
|
try {
|
|
uint64_t fee_inc_code;
|
|
reader >> Using<DepGraphFormatter>(depgraph) >> VARINT(fee_inc_code);
|
|
fee_inc = fee_inc_code & 0x3ffff;
|
|
} catch (const std::ios_base::failure&) {}
|
|
if (depgraph.TxCount() == 0) return;
|
|
|
|
// Retrieve two linearizations from the fuzz input.
|
|
auto lin = ReadLinearization(depgraph, reader);
|
|
auto lin_leaf = ReadLinearization(depgraph, reader);
|
|
|
|
// Construct a linearization identical to lin, but with the tail end of lin_leaf moved to the
|
|
// back.
|
|
std::vector<DepGraphIndex> lin_moved;
|
|
for (auto i : lin) {
|
|
if (i != lin_leaf.back()) lin_moved.push_back(i);
|
|
}
|
|
lin_moved.push_back(lin_leaf.back());
|
|
|
|
// Postlinearize lin_moved.
|
|
PostLinearize(depgraph, lin_moved);
|
|
SanityCheck(depgraph, lin_moved);
|
|
|
|
// Compare diagrams (applying the fee delta after computing the old one).
|
|
auto old_chunking = ChunkLinearization(depgraph, lin);
|
|
depgraph.FeeRate(lin_leaf.back()).fee += fee_inc;
|
|
auto new_chunking = ChunkLinearization(depgraph, lin_moved);
|
|
auto cmp = CompareChunks(new_chunking, old_chunking);
|
|
assert(cmp >= 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_merge)
|
|
{
|
|
// Construct an arbitrary graph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Retrieve two linearizations from the fuzz input.
|
|
auto lin1 = ReadLinearization(depgraph, reader);
|
|
auto lin2 = ReadLinearization(depgraph, reader);
|
|
|
|
// Merge the two.
|
|
auto lin_merged = MergeLinearizations(depgraph, lin1, lin2);
|
|
|
|
// Compute chunkings and compare.
|
|
auto chunking1 = ChunkLinearization(depgraph, lin1);
|
|
auto chunking2 = ChunkLinearization(depgraph, lin2);
|
|
auto chunking_merged = ChunkLinearization(depgraph, lin_merged);
|
|
auto cmp1 = CompareChunks(chunking_merged, chunking1);
|
|
assert(cmp1 >= 0);
|
|
auto cmp2 = CompareChunks(chunking_merged, chunking2);
|
|
assert(cmp2 >= 0);
|
|
}
|
|
|
|
FUZZ_TARGET(clusterlin_fix_linearization)
|
|
{
|
|
// Verify expected properties of FixLinearization() on arbitrary linearizations.
|
|
|
|
// Retrieve a depgraph from the fuzz input.
|
|
SpanReader reader(buffer);
|
|
DepGraph<TestBitSet> depgraph;
|
|
try {
|
|
reader >> Using<DepGraphFormatter>(depgraph);
|
|
} catch (const std::ios_base::failure&) {}
|
|
|
|
// Construct an arbitrary linearization (not necessarily topological for depgraph).
|
|
std::vector<DepGraphIndex> linearization = ReadLinearization(depgraph, reader, /*topological=*/false);
|
|
assert(linearization.size() == depgraph.TxCount());
|
|
|
|
// Determine what prefix of linearization is topological, i.e., the position of the first entry
|
|
// in linearization which corresponds to a transaction that is not preceded by all its
|
|
// ancestors.
|
|
size_t topo_prefix = 0;
|
|
auto todo = depgraph.Positions();
|
|
while (topo_prefix < linearization.size()) {
|
|
DepGraphIndex idx = linearization[topo_prefix];
|
|
todo.Reset(idx);
|
|
if (todo.Overlaps(depgraph.Ancestors(idx))) break;
|
|
++topo_prefix;
|
|
}
|
|
|
|
// Then make a fixed copy of linearization.
|
|
auto linearization_fixed = linearization;
|
|
FixLinearization(depgraph, linearization_fixed);
|
|
// Sanity check it (which includes testing whether it is topological).
|
|
SanityCheck(depgraph, linearization_fixed);
|
|
|
|
// FixLinearization does not modify the topological prefix of linearization.
|
|
assert(std::equal(linearization.begin(), linearization.begin() + topo_prefix,
|
|
linearization_fixed.begin()));
|
|
// This also means that if linearization was entirely topological, FixLinearization cannot have
|
|
// modified it. This is implied by the assertion above already, but repeat it explicitly.
|
|
if (topo_prefix == linearization.size()) {
|
|
assert(linearization == linearization_fixed);
|
|
}
|
|
}
|