// Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-present The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_TXMEMPOOL_H #define BITCOIN_TXMEMPOOL_H #include #include #include #include #include // IWYU pragma: export #include // IWYU pragma: export #include // IWYU pragma: export #include // IWYU pragma: export #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class CChain; class ValidationSignals; struct bilingual_str; /** Fake height value used in Coin to signify they are only in the memory pool (since 0.8) */ static const uint32_t MEMPOOL_HEIGHT = 0x7FFFFFFF; /** How many linearization iterations required for TxGraph clusters to have * "acceptable" quality, if they cannot be optimally linearized with fewer * iterations. */ static constexpr uint64_t ACCEPTABLE_ITERS = 1'700; /** How much work we ask TxGraph to do after a mempool change occurs (either * due to a changeset being applied, a new block being found, or a reorg). */ static constexpr uint64_t POST_CHANGE_WORK = 5 * ACCEPTABLE_ITERS; /** * Test whether the LockPoints height and time are still valid on the current chain */ bool TestLockPointValidity(CChain& active_chain, const LockPoints& lp) EXCLUSIVE_LOCKS_REQUIRED(cs_main); // extracts a transaction hash from CTxMemPoolEntry or CTransactionRef struct mempoolentry_txid { typedef Txid result_type; result_type operator() (const CTxMemPoolEntry &entry) const { return entry.GetTx().GetHash(); } result_type operator() (const CTransactionRef& tx) const { return tx->GetHash(); } }; // extracts a transaction witness-hash from CTxMemPoolEntry or CTransactionRef struct mempoolentry_wtxid { typedef Wtxid result_type; result_type operator() (const CTxMemPoolEntry &entry) const { return entry.GetTx().GetWitnessHash(); } result_type operator() (const CTransactionRef& tx) const { return tx->GetWitnessHash(); } }; class CompareTxMemPoolEntryByEntryTime { public: bool operator()(const CTxMemPoolEntry& a, const CTxMemPoolEntry& b) const { return a.GetTime() < b.GetTime(); } }; // Multi_index tag names struct entry_time {}; struct index_by_wtxid {}; /** * Information about a mempool transaction. */ struct TxMempoolInfo { /** The transaction itself */ CTransactionRef tx; /** Time the transaction entered the mempool. */ std::chrono::seconds m_time; /** Fee of the transaction. */ CAmount fee; /** Virtual size of the transaction. */ int32_t vsize; /** The fee delta. */ int64_t nFeeDelta; }; /** * CTxMemPool stores valid-according-to-the-current-best-chain transactions * that may be included in the next block. * * Transactions are added when they are seen on the network (or created by the * local node), but not all transactions seen are added to the pool. For * example, the following new transactions will not be added to the mempool: * - a transaction which doesn't meet the minimum fee requirements. * - a new transaction that double-spends an input of a transaction already in * the pool where the new transaction does not meet the Replace-By-Fee * requirements as defined in doc/policy/mempool-replacements.md. * - a non-standard transaction. * * TxGraph (CTxMemPool::m_txgraph) provides an abstraction layer for separating * the transaction graph parts of the mempool from the rest of the * Bitcoin-specific logic. Specifically, TxGraph handles (for each transaction) * managing the in-mempool parents and children, and has knowledge of the fee * and size of every transaction. It uses this to partition the mempool into * connected clusters, and it implements (among other things): * - limits on the size of a cluster (in both number of transactions * and total weight) * - sorting the mempool optimally for block inclusion, taking into account * dependencies * - selecting transactions for removal due to cluster size limit violations * after a reorg. * See txgraph.h and txgraph.cpp for more details. * * CTxMemPool itself handles the Bitcoin-specific parts of mempool * transactions; it stores the full transaction inside CTxMemPoolEntry, along * with other consensus-specific fields (such as whether a transaction spends a * coinbase, or the LockPoints for transaction finality). And it provides * interfaces to the rest of the codebase, such as: * - to validation for replace-by-fee calculations and cluster size limits * when evaluating unconfirmed transactions * - to validation for evicting transactions due to expiry or the mempool size * limit being hit * - to validation for updating the mempool to be consistent with the best * chain after a new block is connected or after a reorg. * - to net_processing for ordering transactions that are to-be-announced to * other peers * - to RPC code for inspecting the mempool * * (Many of these interfaces are just wrappers around corresponding TxGraph * functions.) * * Within CTxMemPool, the mempool entries are stored in a boost::multi_index * mapTx, which sorts the mempool on 3 criteria: * - transaction hash (txid) * - witness-transaction hash (wtxid) * - time in mempool * * We also maintain a map from COutPoint to the (in-mempool) transaction that * spends it (mapNextTx). This allows us to recover from a reorg and find * transactions in the mempool that conflict with transactions that are * confirmed in a block. * */ class CTxMemPool { protected: std::atomic nTransactionsUpdated{0}; //!< Used by getblocktemplate to trigger CreateNewBlock() invocation uint64_t totalTxSize GUARDED_BY(cs){0}; //!< sum of all mempool tx's virtual sizes. Differs from serialized tx size since witness data is discounted. Defined in BIP 141. CAmount m_total_fee GUARDED_BY(cs){0}; //!< sum of all mempool tx's fees (NOT modified fee) uint64_t cachedInnerUsage GUARDED_BY(cs){0}; //!< sum of dynamic memory usage of all the map elements (NOT the maps themselves) mutable int64_t lastRollingFeeUpdate GUARDED_BY(cs){GetTime()}; mutable bool blockSinceLastRollingFeeBump GUARDED_BY(cs){false}; mutable double rollingMinimumFeeRate GUARDED_BY(cs){0}; //!< minimum fee to get into the pool, decreases exponentially mutable Epoch m_epoch GUARDED_BY(cs){}; // In-memory counter for external mempool tracking purposes. // This number is incremented once every time a transaction // is added or removed from the mempool for any reason. mutable uint64_t m_sequence_number GUARDED_BY(cs){1}; void trackPackageRemoved(const CFeeRate& rate) EXCLUSIVE_LOCKS_REQUIRED(cs); bool m_load_tried GUARDED_BY(cs){false}; CFeeRate GetMinFee(size_t sizelimit) const; public: static const int ROLLING_FEE_HALFLIFE = 60 * 60 * 12; // public only for testing struct CTxMemPoolEntry_Indices final : boost::multi_index::indexed_by< // sorted by txid boost::multi_index::hashed_unique, // sorted by wtxid boost::multi_index::hashed_unique< boost::multi_index::tag, mempoolentry_wtxid, SaltedWtxidHasher >, // sorted by entry time boost::multi_index::ordered_non_unique< boost::multi_index::tag, boost::multi_index::identity, CompareTxMemPoolEntryByEntryTime > > {}; typedef boost::multi_index_container< CTxMemPoolEntry, CTxMemPoolEntry_Indices > indexed_transaction_set; /** * This mutex needs to be locked when accessing `mapTx` or other members * that are guarded by it. * * @par Consistency guarantees * By design, it is guaranteed that: * 1. Locking both `cs_main` and `mempool.cs` will give a view of mempool * that is consistent with current chain tip (`ActiveChain()` and * `CoinsTip()`) and is fully populated. Fully populated means that if the * current active chain is missing transactions that were present in a * previously active chain, all the missing transactions will have been * re-added to the mempool and should be present if they meet size and * consistency constraints. * 2. Locking `mempool.cs` without `cs_main` will give a view of a mempool * consistent with some chain that was active since `cs_main` was last * locked, and that is fully populated as described above. It is ok for * code that only needs to query or remove transactions from the mempool * to lock just `mempool.cs` without `cs_main`. * * To provide these guarantees, it is necessary to lock both `cs_main` and * `mempool.cs` whenever adding transactions to the mempool and whenever * changing the chain tip. It's necessary to keep both mutexes locked until * the mempool is consistent with the new chain tip and fully populated. */ mutable RecursiveMutex cs; std::unique_ptr m_txgraph GUARDED_BY(cs); mutable std::unique_ptr m_builder GUARDED_BY(cs); indexed_transaction_set mapTx GUARDED_BY(cs); using txiter = indexed_transaction_set::nth_index<0>::type::const_iterator; std::vector> txns_randomized GUARDED_BY(cs); //!< All transactions in mapTx with their wtxids, in arbitrary order typedef std::set setEntries; using Limits = kernel::MemPoolLimits; std::tuple CalculateAncestorData(const CTxMemPoolEntry& entry) const EXCLUSIVE_LOCKS_REQUIRED(cs); std::tuple CalculateDescendantData(const CTxMemPoolEntry& entry) const EXCLUSIVE_LOCKS_REQUIRED(cs); int64_t GetDescendantCount(txiter it) const { LOCK(cs); return m_txgraph->GetDescendants(*it, TxGraph::Level::MAIN).size(); } int64_t GetDescendantCount(const CTxMemPoolEntry &e) const { LOCK(cs); return m_txgraph->GetDescendants(e, TxGraph::Level::MAIN).size(); } int64_t GetAncestorCount(const CTxMemPoolEntry &e) const { LOCK(cs); return m_txgraph->GetAncestors(e, TxGraph::Level::MAIN).size(); } std::vector GetChildren(const CTxMemPoolEntry &entry) const; std::vector GetParents(const CTxMemPoolEntry &entry) const; private: std::vector GetSortedScoreWithTopology() const EXCLUSIVE_LOCKS_REQUIRED(cs); /** * Track locally submitted transactions to periodically retry initial broadcast. */ std::set m_unbroadcast_txids GUARDED_BY(cs); static TxMempoolInfo GetInfo(CTxMemPool::indexed_transaction_set::const_iterator it) { return TxMempoolInfo{it->GetSharedTx(), it->GetTime(), it->GetFee(), it->GetTxSize(), it->GetModifiedFee() - it->GetFee()}; } // Helper to remove all transactions that conflict with a given // transaction (used for transactions appearing in a block). void removeConflicts(const CTransaction& tx) EXCLUSIVE_LOCKS_REQUIRED(cs); public: indirectmap mapNextTx GUARDED_BY(cs); std::map mapDeltas GUARDED_BY(cs); using Options = kernel::MemPoolOptions; const Options m_opts; /** Create a new CTxMemPool. * Sanity checks will be off by default for performance, because otherwise * accepting transactions becomes O(N^2) where N is the number of transactions * in the pool. */ explicit CTxMemPool(Options opts, bilingual_str& error); /** * If sanity-checking is turned on, check makes sure the pool is * consistent (does not contain two transactions that spend the same inputs, * all inputs are in the mapNextTx array). If sanity-checking is turned off, * check does nothing. */ void check(const CCoinsViewCache& active_coins_tip, int64_t spendheight) const EXCLUSIVE_LOCKS_REQUIRED(::cs_main); /** * Remove a transaction from the mempool along with any descendants. * If the transaction is not already in the mempool, find any descendants * and remove them. */ void removeRecursive(const CTransaction& tx, MemPoolRemovalReason reason) EXCLUSIVE_LOCKS_REQUIRED(cs); /** After reorg, filter the entries that would no longer be valid in the next block, and update * the entries' cached LockPoints if needed. The mempool does not have any knowledge of * consensus rules. It just applies the callable function and removes the ones for which it * returns true. * @param[in] filter_final_and_mature Predicate that checks the relevant validation rules * and updates an entry's LockPoints. * */ void removeForReorg(CChain& chain, std::function filter_final_and_mature) EXCLUSIVE_LOCKS_REQUIRED(cs, cs_main); void removeForBlock(const std::vector& vtx, unsigned int nBlockHeight) EXCLUSIVE_LOCKS_REQUIRED(cs); bool CompareMiningScoreWithTopology(const Wtxid& hasha, const Wtxid& hashb) const; bool isSpent(const COutPoint& outpoint) const; unsigned int GetTransactionsUpdated() const; void AddTransactionsUpdated(unsigned int n); /** * Check that none of this transactions inputs are in the mempool, and thus * the tx is not dependent on other mempool transactions to be included in a block. */ bool HasNoInputsOf(const CTransaction& tx) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** Affect CreateNewBlock prioritisation of transactions */ void PrioritiseTransaction(const Txid& hash, const CAmount& nFeeDelta); void ApplyDelta(const Txid& hash, CAmount &nFeeDelta) const EXCLUSIVE_LOCKS_REQUIRED(cs); void ClearPrioritisation(const Txid& hash) EXCLUSIVE_LOCKS_REQUIRED(cs); struct delta_info { /** Whether this transaction is in the mempool. */ const bool in_mempool; /** The fee delta added using PrioritiseTransaction(). */ const CAmount delta; /** The modified fee (base fee + delta) of this entry. Only present if in_mempool=true. */ std::optional modified_fee; /** The prioritised transaction's txid. */ const Txid txid; }; /** Return a vector of all entries in mapDeltas with their corresponding delta_info. */ std::vector GetPrioritisedTransactions() const EXCLUSIVE_LOCKS_REQUIRED(!cs); /** Get the transaction in the pool that spends the same prevout */ const CTransaction* GetConflictTx(const COutPoint& prevout) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** Returns an iterator to the given hash, if found */ std::optional GetIter(const Txid& txid) const EXCLUSIVE_LOCKS_REQUIRED(cs); std::optional GetIter(const Wtxid& wtxid) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** Translate a set of hashes into a set of pool iterators to avoid repeated lookups. * Does not require that all of the hashes correspond to actual transactions in the mempool, * only returns the ones that exist. */ setEntries GetIterSet(const std::set& hashes) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** Translate a list of hashes into a list of mempool iterators to avoid repeated lookups. * The nth element in txids becomes the nth element in the returned vector. If any of the txids * don't actually exist in the mempool, returns an empty vector. */ std::vector GetIterVec(const std::vector& txids) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** UpdateTransactionsFromBlock is called when adding transactions from a * disconnected block back to the mempool, new mempool entries may have * children in the mempool (which is generally not the case when otherwise * adding transactions). * @post updated descendant state for descendants of each transaction in * vHashesToUpdate (excluding any child transactions present in * vHashesToUpdate, which are already accounted for). Updated state * includes add fee/size information for such descendants to the * parent and updated ancestor state to include the parent. * * @param[in] vHashesToUpdate The set of txids from the * disconnected block that have been accepted back into the mempool. */ void UpdateTransactionsFromBlock(const std::vector& vHashesToUpdate) EXCLUSIVE_LOCKS_REQUIRED(cs, cs_main) LOCKS_EXCLUDED(m_epoch); std::vector GetFeerateDiagram() const EXCLUSIVE_LOCKS_REQUIRED(cs); FeePerWeight GetMainChunkFeerate(const CTxMemPoolEntry& tx) const EXCLUSIVE_LOCKS_REQUIRED(cs) { return m_txgraph->GetMainChunkFeerate(tx); } std::vector GetCluster(Txid txid) const EXCLUSIVE_LOCKS_REQUIRED(cs) { auto tx = GetIter(txid); if (!tx) return {}; auto cluster = m_txgraph->GetCluster(**tx, TxGraph::Level::MAIN); std::vector ret; ret.reserve(cluster.size()); for (const auto& tx : cluster) { ret.emplace_back(static_cast(tx)); } return ret; } size_t GetUniqueClusterCount(const setEntries& iters_conflicting) const EXCLUSIVE_LOCKS_REQUIRED(cs) { std::vector entries; entries.reserve(iters_conflicting.size()); for (auto it : iters_conflicting) { entries.emplace_back(&*it); } Assume(!m_txgraph->IsOversized(TxGraph::Level::MAIN)); return m_txgraph->CountDistinctClusters(entries, TxGraph::Level::MAIN); } /** * Calculate all in-mempool ancestors of entry (not including the tx itself) * * @param[in] entry CTxMemPoolEntry of which all in-mempool ancestors are calculated * * @return all in-mempool ancestors */ setEntries CalculateMemPoolAncestors(const CTxMemPoolEntry& entry) const EXCLUSIVE_LOCKS_REQUIRED(cs); bool HasDescendants(const Txid& txid) const; /** Collect the entire cluster of connected transactions for each transaction in txids. * All txids must correspond to transaction entries in the mempool, otherwise this returns an * empty vector. This call will also exit early and return an empty vector if it collects 500 or * more transactions as a DoS protection. */ std::vector GatherClusters(const std::vector& txids) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** Populate setDescendants with all in-mempool descendants of given transaction. * Assumes that setDescendants includes all in-mempool descendants of anything * already in it. */ void CalculateDescendants(txiter it, setEntries& setDescendants) const EXCLUSIVE_LOCKS_REQUIRED(cs); CTxMemPool::txiter CalculateDescendants(const CTxMemPoolEntry& entry, setEntries& setDescendants) const EXCLUSIVE_LOCKS_REQUIRED(cs); /** The minimum fee to get into the mempool, which may itself not be enough * for larger-sized transactions. * The m_incremental_relay_feerate policy variable is used to bound the time it * takes the fee rate to go back down all the way to 0. When the feerate * would otherwise be half of this, it is set to 0 instead. */ CFeeRate GetMinFee() const { return GetMinFee(m_opts.max_size_bytes); } /** Remove transactions from the mempool until its dynamic size is <= sizelimit. * pvNoSpendsRemaining, if set, will be populated with the list of outpoints * which are not in mempool which no longer have any spends in this mempool. */ void TrimToSize(size_t sizelimit, std::vector* pvNoSpendsRemaining = nullptr) EXCLUSIVE_LOCKS_REQUIRED(cs); /** Expire all transaction (and their dependencies) in the mempool older than time. Return the number of removed transactions. */ int Expire(std::chrono::seconds time) EXCLUSIVE_LOCKS_REQUIRED(cs); /** * Calculate the ancestor and cluster count for the given transaction. * The counts include the transaction itself. * When ancestors is non-zero (ie, the transaction itself is in the mempool), * ancestorsize and ancestorfees will also be set to the appropriate values. */ void GetTransactionAncestry(const Txid& txid, size_t& ancestors, size_t& cluster_count, size_t* ancestorsize = nullptr, CAmount* ancestorfees = nullptr) const; /** * @returns true if an initial attempt to load the persisted mempool was made, regardless of * whether the attempt was successful or not */ bool GetLoadTried() const; /** * Set whether or not an initial attempt to load the persisted mempool was made (regardless * of whether the attempt was successful or not) */ void SetLoadTried(bool load_tried); unsigned long size() const { LOCK(cs); return mapTx.size(); } uint64_t GetTotalTxSize() const EXCLUSIVE_LOCKS_REQUIRED(cs) { AssertLockHeld(cs); return totalTxSize; } CAmount GetTotalFee() const EXCLUSIVE_LOCKS_REQUIRED(cs) { AssertLockHeld(cs); return m_total_fee; } bool exists(const Txid& txid) const { LOCK(cs); return (mapTx.count(txid) != 0); } bool exists(const Wtxid& wtxid) const { LOCK(cs); return (mapTx.get().count(wtxid) != 0); } const CTxMemPoolEntry* GetEntry(const Txid& txid) const LIFETIMEBOUND EXCLUSIVE_LOCKS_REQUIRED(cs); CTransactionRef get(const Txid& hash) const; template TxMempoolInfo info(const T& id) const { LOCK(cs); auto i{GetIter(id)}; return i.has_value() ? GetInfo(*i) : TxMempoolInfo{}; } /** Returns info for a transaction if its entry_sequence < last_sequence */ template TxMempoolInfo info_for_relay(const T& id, uint64_t last_sequence) const { LOCK(cs); auto i{GetIter(id)}; return (i.has_value() && i.value()->GetSequence() < last_sequence) ? GetInfo(*i) : TxMempoolInfo{}; } std::vector entryAll() const EXCLUSIVE_LOCKS_REQUIRED(cs); std::vector infoAll() const; size_t DynamicMemoryUsage() const; /** Adds a transaction to the unbroadcast set */ void AddUnbroadcastTx(const Txid& txid) { LOCK(cs); // Sanity check the transaction is in the mempool & insert into // unbroadcast set. if (exists(txid)) m_unbroadcast_txids.insert(txid); }; bool CheckPolicyLimits(const CTransactionRef& tx); /** Removes a transaction from the unbroadcast set */ void RemoveUnbroadcastTx(const Txid& txid, const bool unchecked = false); /** Returns transactions in unbroadcast set */ std::set GetUnbroadcastTxs() const { LOCK(cs); return m_unbroadcast_txids; } /** Returns whether a txid is in the unbroadcast set */ bool IsUnbroadcastTx(const Txid& txid) const EXCLUSIVE_LOCKS_REQUIRED(cs) { AssertLockHeld(cs); return m_unbroadcast_txids.contains(txid); } /** Guards this internal counter for external reporting */ uint64_t GetAndIncrementSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs) { return m_sequence_number++; } uint64_t GetSequence() const EXCLUSIVE_LOCKS_REQUIRED(cs) { return m_sequence_number; } private: /** Remove a set of transactions from the mempool. * If a transaction is in this set, then all in-mempool descendants must * also be in the set, unless this transaction is being removed for being * in a block. */ void RemoveStaged(setEntries& stage, MemPoolRemovalReason reason) EXCLUSIVE_LOCKS_REQUIRED(cs); /* Helper for the public removeRecursive() */ void removeRecursive(txiter to_remove, MemPoolRemovalReason reason) EXCLUSIVE_LOCKS_REQUIRED(cs); /** Before calling removeUnchecked for a given transaction, * UpdateForRemoveFromMempool must be called on the entire (dependent) set * of transactions being removed at the same time. We use each * CTxMemPoolEntry's m_parents in order to walk ancestors of a * given transaction that is removed, so we can't remove intermediate * transactions in a chain before we've updated all the state for the * removal. */ void removeUnchecked(txiter entry, MemPoolRemovalReason reason) EXCLUSIVE_LOCKS_REQUIRED(cs); public: /** visited marks a CTxMemPoolEntry as having been traversed * during the lifetime of the most recently created Epoch::Guard * and returns false if we are the first visitor, true otherwise. * * An Epoch::Guard must be held when visited is called or an assert will be * triggered. * */ bool visited(const txiter it) const EXCLUSIVE_LOCKS_REQUIRED(cs, m_epoch) { return m_epoch.visited(it->m_epoch_marker); } bool visited(std::optional it) const EXCLUSIVE_LOCKS_REQUIRED(cs, m_epoch) { assert(m_epoch.guarded()); // verify guard even when it==nullopt return !it || visited(*it); } /* * CTxMemPool::ChangeSet: * * This class is used for all mempool additions and associated removals (eg * due to rbf). Removals that don't need to be evaluated for acceptance, * such as removing transactions that appear in a block, or due to reorg, * or removals related to mempool limiting or expiry do not need to use * this. * * Callers can interleave calls to StageAddition()/StageRemoval(), and * removals may be invoked in any order, but additions must be done in a * topological order in the case of transaction packages (ie, parents must * be added before children). * * CalculateChunksForRBF() can be used to calculate the feerate diagram of * the proposed set of new transactions and compare with the existing * mempool. * * CalculateMemPoolAncestors() calculates the in-mempool (not including * what is in the change set itself) ancestors of a given transaction. * * Apply() will apply the removals and additions that are staged into the * mempool. * * Only one changeset may exist at a time. While a changeset is * outstanding, no removals or additions may be made directly to the * mempool. */ class ChangeSet { public: explicit ChangeSet(CTxMemPool* pool) : m_pool(pool) { m_pool->m_txgraph->StartStaging(); } ~ChangeSet() EXCLUSIVE_LOCKS_REQUIRED(m_pool->cs) { AssertLockHeld(m_pool->cs); if (m_pool->m_txgraph->HaveStaging()) { m_pool->m_txgraph->AbortStaging(); } m_pool->m_have_changeset = false; } ChangeSet(const ChangeSet&) = delete; ChangeSet& operator=(const ChangeSet&) = delete; using TxHandle = CTxMemPool::txiter; TxHandle StageAddition(const CTransactionRef& tx, const CAmount fee, int64_t time, unsigned int entry_height, uint64_t entry_sequence, bool spends_coinbase, int64_t sigops_cost, LockPoints lp); void StageRemoval(CTxMemPool::txiter it); const CTxMemPool::setEntries& GetRemovals() const { return m_to_remove; } /** Check if any cluster limits are exceeded. Returns true if pass, false if fail. */ bool CheckMemPoolPolicyLimits(); CTxMemPool::setEntries CalculateMemPoolAncestors(TxHandle tx) { // Look up transaction in our cache first auto it = m_ancestors.find(tx); if (it != m_ancestors.end()) return it->second; // If not found, try to have the mempool calculate it, and cache // for later. LOCK(m_pool->cs); auto ret = m_pool->CalculateMemPoolAncestors(*tx); m_ancestors.try_emplace(tx, ret); return ret; } std::vector GetAddedTxns() const { std::vector ret; ret.reserve(m_entry_vec.size()); for (const auto& entry : m_entry_vec) { ret.emplace_back(entry->GetSharedTx()); } return ret; } /** * Calculate the sorted chunks for the old and new mempool relating to the * clusters that would be affected by a potential replacement transaction. * * @return old and new diagram pair respectively, or an error string if the conflicts don't match a calculable topology */ util::Result, std::vector>> CalculateChunksForRBF(); size_t GetTxCount() const { return m_entry_vec.size(); } const CTransaction& GetAddedTxn(size_t index) const { return m_entry_vec.at(index)->GetTx(); } void Apply() EXCLUSIVE_LOCKS_REQUIRED(cs_main); private: void ProcessDependencies(); CTxMemPool* m_pool; CTxMemPool::indexed_transaction_set m_to_add; std::vector m_entry_vec; // track the added transactions' insertion order // map from the m_to_add index to the ancestors for the transaction std::map m_ancestors; CTxMemPool::setEntries m_to_remove; bool m_dependencies_processed{false}; friend class CTxMemPool; }; std::unique_ptr GetChangeSet() EXCLUSIVE_LOCKS_REQUIRED(cs) { Assume(!m_have_changeset); m_have_changeset = true; return std::make_unique(this); } bool m_have_changeset GUARDED_BY(cs){false}; friend class CTxMemPool::ChangeSet; private: // Apply the given changeset to the mempool, by removing transactions in // the to_remove set and adding transactions in the to_add set. void Apply(CTxMemPool::ChangeSet* changeset) EXCLUSIVE_LOCKS_REQUIRED(cs); // addNewTransaction must update state for all ancestors of a given transaction, // to track size/count of descendant transactions. First version of // addNewTransaction can be used to have it call CalculateMemPoolAncestors(), and // then invoke the second version. // Note that addNewTransaction is ONLY called (via Apply()) from ATMP // outside of tests and any other callers may break wallet's in-mempool // tracking (due to lack of CValidationInterface::TransactionAddedToMempool // callbacks). void addNewTransaction(CTxMemPool::txiter it) EXCLUSIVE_LOCKS_REQUIRED(cs); public: void StartBlockBuilding() const EXCLUSIVE_LOCKS_REQUIRED(cs) { assert(!m_builder); m_builder = m_txgraph->GetBlockBuilder(); } FeePerWeight GetBlockBuilderChunk(std::vector& entries) const EXCLUSIVE_LOCKS_REQUIRED(cs) { if (!m_builder) { return {}; } auto res = m_builder->GetCurrentChunk(); if (!res) { return {}; } auto [chunk_entries, chunk_feerate] = *res; for (TxGraph::Ref* ref : chunk_entries) { entries.emplace_back(static_cast(*ref)); } return chunk_feerate; } void IncludeBuilderChunk() const EXCLUSIVE_LOCKS_REQUIRED(cs) { m_builder->Include(); } void SkipBuilderChunk() const EXCLUSIVE_LOCKS_REQUIRED(cs) { m_builder->Skip(); } void StopBlockBuilding() const EXCLUSIVE_LOCKS_REQUIRED(cs) { m_builder.reset(); } }; /** * CCoinsView that brings transactions from a mempool into view. * It does not check for spendings by memory pool transactions. * Instead, it provides access to all Coins which are either unspent in the * base CCoinsView, are outputs from any mempool transaction, or are * tracked temporarily to allow transaction dependencies in package validation. * This allows transaction replacement to work as expected, as you want to * have all inputs "available" to check signatures, and any cycles in the * dependency graph are checked directly in AcceptToMemoryPool. * It also allows you to sign a double-spend directly in * signrawtransactionwithkey and signrawtransactionwithwallet, * as long as the conflicting transaction is not yet confirmed. */ class CCoinsViewMemPool : public CCoinsViewBacked { /** * Coins made available by transactions being validated. Tracking these allows for package * validation, since we can access transaction outputs without submitting them to mempool. */ std::unordered_map m_temp_added; /** * Set of all coins that have been fetched from mempool or created using PackageAddTransaction * (not base). Used to track the origin of a coin, see GetNonBaseCoins(). */ mutable std::unordered_set m_non_base_coins; protected: const CTxMemPool& mempool; public: CCoinsViewMemPool(CCoinsView* baseIn, const CTxMemPool& mempoolIn); /** GetCoin, returning whether it exists and is not spent. Also updates m_non_base_coins if the * coin is not fetched from base. */ std::optional GetCoin(const COutPoint& outpoint) const override; /** Add the coins created by this transaction. These coins are only temporarily stored in * m_temp_added and cannot be flushed to the back end. Only used for package validation. */ void PackageAddTransaction(const CTransactionRef& tx); /** Get all coins in m_non_base_coins. */ const std::unordered_set& GetNonBaseCoins() const { return m_non_base_coins; } /** Clear m_temp_added and m_non_base_coins. */ void Reset(); }; #endif // BITCOIN_TXMEMPOOL_H