From 15fb34de41cb069e2bad93a64722bdb32ff00690 Mon Sep 17 00:00:00 2001 From: Hodlinator <172445034+hodlinator@users.noreply.github.com> Date: Wed, 25 Jun 2025 20:19:19 +0200 Subject: [PATCH] refactor(miniscript): Remove superfluous unique_ptr-indirection Functional parity is achieved through making Node move-able. Unfortunately ~Node() now needs to have the recursion linter disabled, as it is unable to figure out that recursion stops 1 level down. The former smart pointers must have been circumventing the linter somehow. NodeRef & MakeNodeRef() are deleted in the following commit (broken out to facilitate review). --- src/script/descriptor.cpp | 32 ++--- src/script/miniscript.h | 243 ++++++++++++++++++---------------- src/test/fuzz/miniscript.cpp | 40 +++--- src/test/miniscript_tests.cpp | 48 +++---- 4 files changed, 189 insertions(+), 174 deletions(-) diff --git a/src/script/descriptor.cpp b/src/script/descriptor.cpp index 8769a262f58..8558c8e29d7 100644 --- a/src/script/descriptor.cpp +++ b/src/script/descriptor.cpp @@ -1584,13 +1584,13 @@ public: class MiniscriptDescriptor final : public DescriptorImpl { private: - miniscript::NodeRef m_node; + miniscript::Node m_node; protected: std::vector MakeScripts(const std::vector& keys, std::span scripts, FlatSigningProvider& provider) const override { - const auto script_ctx{m_node->GetMsCtx()}; + const auto script_ctx{m_node.GetMsCtx()}; for (const auto& key : keys) { if (miniscript::IsTapscript(script_ctx)) { provider.pubkeys.emplace(Hash160(XOnlyPubKey{key}), key); @@ -1598,15 +1598,15 @@ protected: provider.pubkeys.emplace(key.GetID(), key); } } - return Vector(m_node->ToScript(ScriptMaker(keys, script_ctx))); + return Vector(m_node.ToScript(ScriptMaker(keys, script_ctx))); } public: - MiniscriptDescriptor(std::vector> providers, miniscript::NodeRef node) + MiniscriptDescriptor(std::vector> providers, miniscript::Node&& node) : DescriptorImpl(std::move(providers), "?"), m_node(std::move(node)) { // Traverse miniscript tree for unsafe use of older() - miniscript::ForEachNode(*m_node, [&](const miniscript::Node& node) { + miniscript::ForEachNode(m_node, [&](const miniscript::Node& node) { if (node.Fragment() == miniscript::Fragment::OLDER) { const uint32_t raw = node.K(); const uint32_t value_part = raw & ~CTxIn::SEQUENCE_LOCKTIME_TYPE_FLAG; @@ -1626,7 +1626,7 @@ public: const DescriptorCache* cache = nullptr) const override { bool has_priv_key{false}; - auto res = m_node->ToString(StringMaker(arg, m_pubkey_args, type, cache), has_priv_key); + auto res = m_node.ToString(StringMaker(arg, m_pubkey_args, type, cache), has_priv_key); if (res) out = *res; if (type == StringType::PRIVATE) { Assume(res.has_value()); @@ -1639,15 +1639,17 @@ public: bool IsSolvable() const override { return true; } bool IsSingleType() const final { return true; } - std::optional ScriptSize() const override { return m_node->ScriptSize(); } + std::optional ScriptSize() const override { return m_node.ScriptSize(); } - std::optional MaxSatSize(bool) const override { + std::optional MaxSatSize(bool) const override + { // For Miniscript we always assume high-R ECDSA signatures. - return m_node->GetWitnessSize(); + return m_node.GetWitnessSize(); } - std::optional MaxSatisfactionElems() const override { - return m_node->GetStackSize(); + std::optional MaxSatisfactionElems() const override + { + return m_node.GetStackSize(); } std::unique_ptr Clone() const override @@ -1657,7 +1659,7 @@ public: for (const auto& arg : m_pubkey_args) { providers.push_back(arg->Clone()); } - return std::make_unique(std::move(providers), m_node->Clone()); + return std::make_unique(std::move(providers), m_node.Clone()); } }; @@ -2566,7 +2568,7 @@ std::vector> ParseScript(uint32_t& key_exp_index } if (!node->IsSane() || node->IsNotSatisfiable()) { // Try to find the first insane sub for better error reporting. - const decltype(node)::element_type* insane_node = node.get(); + const auto* insane_node = &node.value(); if (const auto sub = node->FindInsaneSub()) insane_node = sub; error = *insane_node->ToString(parser); if (!insane_node->IsValid()) { @@ -2575,7 +2577,7 @@ std::vector> ParseScript(uint32_t& key_exp_index error += " is not sane"; if (!insane_node->IsNonMalleable()) { error += ": malleable witnesses exist"; - } else if (insane_node == node.get() && !insane_node->NeedsSignature()) { + } else if (insane_node == &node.value() && !insane_node->NeedsSignature()) { error += ": witnesses without signature exist"; } else if (!insane_node->CheckTimeLocksMix()) { error += ": contains mixes of timelocks expressed in blocks and seconds"; @@ -2775,7 +2777,7 @@ std::unique_ptr InferScript(const CScript& script, ParseScriptCo for (auto& key : parser.m_keys) { keys.emplace_back(std::move(key.at(0))); } - return std::make_unique(std::move(keys), std::move(node)); + return std::make_unique(std::move(keys), std::move(*node)); } } diff --git a/src/script/miniscript.h b/src/script/miniscript.h index 92925396469..6e59fa5119f 100644 --- a/src/script/miniscript.h +++ b/src/script/miniscript.h @@ -191,11 +191,11 @@ inline consteval Type operator""_mst(const char* c, size_t l) using Opcode = std::pair>; template class Node; -template using NodeRef = std::unique_ptr>; +template using NodeRef = Node; // <- TODO: Remove in next commit. -//! Construct a miniscript node as a unique_ptr. +//! Construct a miniscript node (TODO: remove in next commit). template -NodeRef MakeNodeRef(Args&&... args) { return std::make_unique>(std::forward(args)...); } +Node MakeNodeRef(Args&&... args) { return Node(std::forward(args)...); } //! Unordered traversal of a miniscript node tree. template &> Fn> @@ -207,7 +207,7 @@ void ForEachNode(const Node& root, Fn&& fn) std::invoke(fn, node); stack.pop_back(); for (const auto& sub : node.Subs()) { - stack.emplace_back(*sub); + stack.emplace_back(sub); } } } @@ -550,6 +550,8 @@ class Node MiniscriptContext m_script_ctx; public: + // Permit 1 level deep recursion since we own instances of our own type. + // NOLINTBEGIN(misc-no-recursion) ~Node() { // Destroy the subexpressions iteratively after moving out their @@ -558,23 +560,25 @@ public: while (!subs.empty()) { auto node = std::move(subs.back()); subs.pop_back(); - while (!node->subs.empty()) { - subs.push_back(std::move(node->subs.back())); - node->subs.pop_back(); + while (!node.subs.empty()) { + subs.push_back(std::move(node.subs.back())); + node.subs.pop_back(); } } } + // NOLINTEND(misc-no-recursion) - NodeRef Clone() const + Node Clone() const { // Use TreeEval() to avoid a stack-overflow due to recursion auto upfn = [](const Node& node, std::span> children) { std::vector> new_subs; - for (auto child = children.begin(); child != children.end(); ++child) { - new_subs.emplace_back(std::move(*child)); + for (auto& child : children) { + // It's fine to move from children as they are new nodes having + // been produced by calling this function one level down. + new_subs.push_back(std::move(child)); } - // std::make_unique (and therefore MakeNodeRef) doesn't work on private constructors - return std::unique_ptr{new Node{internal::NoDupCheck{}, node.m_script_ctx, node.fragment, std::move(new_subs), node.keys, node.data, node.k}}; + return Node{internal::NoDupCheck{}, node.m_script_ctx, node.fragment, std::move(new_subs), node.keys, node.data, node.k}; }; return TreeEval>(upfn); } @@ -610,12 +614,13 @@ private: : fragment(nt), k(val), keys(key), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} //! Compute the length of the script for this miniscript (including children). - size_t CalcScriptLen() const { + size_t CalcScriptLen() const + { size_t subsize = 0; for (const auto& sub : subs) { - subsize += sub->ScriptSize(); + subsize += sub.ScriptSize(); } - Type sub0type = subs.size() > 0 ? subs[0]->GetType() : ""_mst; + Type sub0type = subs.size() > 0 ? subs[0].GetType() : ""_mst; return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx); } @@ -686,7 +691,7 @@ private: * that child (and all earlier children) will be at the end of `results`. */ size_t child_index = stack.back().expanded++; State child_state = downfn(stack.back().state, node, child_index); - stack.emplace_back(*node.subs[child_index], 0, std::move(child_state)); + stack.emplace_back(node.subs[child_index], 0, std::move(child_state)); continue; } // Invoke upfn with the last node.subs.size() elements of results as input. @@ -764,7 +769,7 @@ private: if (b.subs.size() < a.subs.size()) return 1; size_t n = a.subs.size(); for (size_t i = 0; i < n; ++i) { - queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]); + queue.emplace_back(a.subs[n - 1 - i], b.subs[n - 1 - i]); } } return 0; @@ -777,12 +782,12 @@ private: // THRESH has a variable number of subexpressions std::vector sub_types; if (fragment == Fragment::THRESH) { - for (const auto& sub : subs) sub_types.push_back(sub->GetType()); + for (const auto& sub : subs) sub_types.push_back(sub.GetType()); } // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions. - Type x = subs.size() > 0 ? subs[0]->GetType() : ""_mst; - Type y = subs.size() > 1 ? subs[1]->GetType() : ""_mst; - Type z = subs.size() > 2 ? subs[2]->GetType() : ""_mst; + Type x = subs.size() > 0 ? subs[0].GetType() : ""_mst; + Type y = subs.size() > 1 ? subs[1].GetType() : ""_mst; + Type z = subs.size() > 2 ? subs[2].GetType() : ""_mst; return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx)); } @@ -821,7 +826,7 @@ public: case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG); case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF); case Fragment::WRAP_V: { - if (node.subs[0]->GetType() << "x"_mst) { + if (node.subs[0].GetType() << "x"_mst) { return BuildScript(std::move(subs[0]), OP_VERIFY); } else { return std::move(subs[0]); @@ -883,9 +888,9 @@ public: node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V || node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N || node.fragment == Fragment::WRAP_C || - (node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) || - (node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) || - (node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0)); + (node.fragment == Fragment::AND_V && node.subs[1].fragment == Fragment::JUST_1) || + (node.fragment == Fragment::OR_I && node.subs[0].fragment == Fragment::JUST_0) || + (node.fragment == Fragment::OR_I && node.subs[1].fragment == Fragment::JUST_0)); }; auto toString = [&ctx, &has_priv_key](Key key) -> std::optional { bool fragment_has_priv_key{false}; @@ -903,15 +908,15 @@ public: case Fragment::WRAP_A: return "a" + std::move(subs[0]); case Fragment::WRAP_S: return "s" + std::move(subs[0]); case Fragment::WRAP_C: - if (node.subs[0]->fragment == Fragment::PK_K) { + if (node.subs[0].fragment == Fragment::PK_K) { // pk(K) is syntactic sugar for c:pk_k(K) - auto key_str = toString(node.subs[0]->keys[0]); + auto key_str = toString(node.subs[0].keys[0]); if (!key_str) return {}; return std::move(ret) + "pk(" + std::move(*key_str) + ")"; } - if (node.subs[0]->fragment == Fragment::PK_H) { + if (node.subs[0].fragment == Fragment::PK_H) { // pkh(K) is syntactic sugar for c:pk_h(K) - auto key_str = toString(node.subs[0]->keys[0]); + auto key_str = toString(node.subs[0].keys[0]); if (!key_str) return {}; return std::move(ret) + "pkh(" + std::move(*key_str) + ")"; } @@ -922,11 +927,11 @@ public: case Fragment::WRAP_N: return "n" + std::move(subs[0]); case Fragment::AND_V: // t:X is syntactic sugar for and_v(X,1). - if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]); + if (node.subs[1].fragment == Fragment::JUST_1) return "t" + std::move(subs[0]); break; case Fragment::OR_I: - if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]); - if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]); + if (node.subs[0].fragment == Fragment::JUST_0) return "l" + std::move(subs[1]); + if (node.subs[1].fragment == Fragment::JUST_0) return "u" + std::move(subs[0]); break; default: break; } @@ -957,7 +962,7 @@ public: case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; case Fragment::ANDOR: // and_n(X,Y) is syntactic sugar for andor(X,Y,0). - if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; + if (node.subs[2].fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")"; case Fragment::MULTI: { CHECK_NONFATAL(!is_tapscript); @@ -1007,59 +1012,59 @@ private: case Fragment::RIPEMD160: case Fragment::HASH256: case Fragment::HASH160: return {4, 0, {}}; - case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}}; + case Fragment::AND_V: return {subs[0].ops.count + subs[1].ops.count, subs[0].ops.sat + subs[1].ops.sat, {}}; case Fragment::AND_B: { - const auto count{1 + subs[0]->ops.count + subs[1]->ops.count}; - const auto sat{subs[0]->ops.sat + subs[1]->ops.sat}; - const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; + const auto count{1 + subs[0].ops.count + subs[1].ops.count}; + const auto sat{subs[0].ops.sat + subs[1].ops.sat}; + const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat}; return {count, sat, dsat}; } case Fragment::OR_B: { - const auto count{1 + subs[0]->ops.count + subs[1]->ops.count}; - const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)}; - const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; + const auto count{1 + subs[0].ops.count + subs[1].ops.count}; + const auto sat{(subs[0].ops.sat + subs[1].ops.dsat) | (subs[1].ops.sat + subs[0].ops.dsat)}; + const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat}; return {count, sat, dsat}; } case Fragment::OR_D: { - const auto count{3 + subs[0]->ops.count + subs[1]->ops.count}; - const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)}; - const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; + const auto count{3 + subs[0].ops.count + subs[1].ops.count}; + const auto sat{subs[0].ops.sat | (subs[1].ops.sat + subs[0].ops.dsat)}; + const auto dsat{subs[0].ops.dsat + subs[1].ops.dsat}; return {count, sat, dsat}; } case Fragment::OR_C: { - const auto count{2 + subs[0]->ops.count + subs[1]->ops.count}; - const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)}; + const auto count{2 + subs[0].ops.count + subs[1].ops.count}; + const auto sat{subs[0].ops.sat | (subs[1].ops.sat + subs[0].ops.dsat)}; return {count, sat, {}}; } case Fragment::OR_I: { - const auto count{3 + subs[0]->ops.count + subs[1]->ops.count}; - const auto sat{subs[0]->ops.sat | subs[1]->ops.sat}; - const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat}; + const auto count{3 + subs[0].ops.count + subs[1].ops.count}; + const auto sat{subs[0].ops.sat | subs[1].ops.sat}; + const auto dsat{subs[0].ops.dsat | subs[1].ops.dsat}; return {count, sat, dsat}; } case Fragment::ANDOR: { - const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count}; - const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)}; - const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat}; + const auto count{3 + subs[0].ops.count + subs[1].ops.count + subs[2].ops.count}; + const auto sat{(subs[1].ops.sat + subs[0].ops.sat) | (subs[0].ops.dsat + subs[2].ops.sat)}; + const auto dsat{subs[0].ops.dsat + subs[2].ops.dsat}; return {count, sat, dsat}; } case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()}; case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0}; case Fragment::WRAP_S: case Fragment::WRAP_C: - case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat}; - case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat}; - case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0}; - case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0}; - case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}}; + case Fragment::WRAP_N: return {1 + subs[0].ops.count, subs[0].ops.sat, subs[0].ops.dsat}; + case Fragment::WRAP_A: return {2 + subs[0].ops.count, subs[0].ops.sat, subs[0].ops.dsat}; + case Fragment::WRAP_D: return {3 + subs[0].ops.count, subs[0].ops.sat, 0}; + case Fragment::WRAP_J: return {4 + subs[0].ops.count, subs[0].ops.sat, 0}; + case Fragment::WRAP_V: return {subs[0].ops.count + (subs[0].GetType() << "x"_mst), subs[0].ops.sat, {}}; case Fragment::THRESH: { uint32_t count = 0; auto sats = Vector(internal::MaxInt(0)); for (const auto& sub : subs) { - count += sub->ops.count + 1; - auto next_sats = Vector(sats[0] + sub->ops.dsat); - for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat)); - next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat); + count += sub.ops.count + 1; + auto next_sats = Vector(sats[0] + sub.ops.dsat); + for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub.ops.dsat) | (sats[j - 1] + sub.ops.sat)); + next_sats.push_back(sats[sats.size() - 1] + sub.ops.sat); sats = std::move(next_sats); } assert(k < sats.size()); @@ -1086,48 +1091,48 @@ private: {} }; case Fragment::ANDOR: { - const auto& x{subs[0]->ss}; - const auto& y{subs[1]->ss}; - const auto& z{subs[2]->ss}; + const auto& x{subs[0].ss}; + const auto& y{subs[1].ss}; + const auto& z{subs[2].ss}; return { (x.Sat() + SatInfo::If() + y.Sat()) | (x.Dsat() + SatInfo::If() + z.Sat()), x.Dsat() + SatInfo::If() + z.Dsat() }; } case Fragment::AND_V: { - const auto& x{subs[0]->ss}; - const auto& y{subs[1]->ss}; + const auto& x{subs[0].ss}; + const auto& y{subs[1].ss}; return {x.Sat() + y.Sat(), {}}; } case Fragment::AND_B: { - const auto& x{subs[0]->ss}; - const auto& y{subs[1]->ss}; + const auto& x{subs[0].ss}; + const auto& y{subs[1].ss}; return {x.Sat() + y.Sat() + SatInfo::BinaryOp(), x.Dsat() + y.Dsat() + SatInfo::BinaryOp()}; } case Fragment::OR_B: { - const auto& x{subs[0]->ss}; - const auto& y{subs[1]->ss}; + const auto& x{subs[0].ss}; + const auto& y{subs[1].ss}; return { ((x.Sat() + y.Dsat()) | (x.Dsat() + y.Sat())) + SatInfo::BinaryOp(), x.Dsat() + y.Dsat() + SatInfo::BinaryOp() }; } case Fragment::OR_C: { - const auto& x{subs[0]->ss}; - const auto& y{subs[1]->ss}; + const auto& x{subs[0].ss}; + const auto& y{subs[1].ss}; return {(x.Sat() + SatInfo::If()) | (x.Dsat() + SatInfo::If() + y.Sat()), {}}; } case Fragment::OR_D: { - const auto& x{subs[0]->ss}; - const auto& y{subs[1]->ss}; + const auto& x{subs[0].ss}; + const auto& y{subs[1].ss}; return { (x.Sat() + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.Dsat() + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.Sat()), x.Dsat() + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.Dsat() }; } case Fragment::OR_I: { - const auto& x{subs[0]->ss}; - const auto& y{subs[1]->ss}; + const auto& x{subs[0].ss}; + const auto& y{subs[1].ss}; return {SatInfo::If() + (x.Sat() | y.Sat()), SatInfo::If() + (x.Dsat() | y.Dsat())}; } // multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k @@ -1141,18 +1146,18 @@ private: case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())}; case Fragment::WRAP_A: case Fragment::WRAP_N: - case Fragment::WRAP_S: return subs[0]->ss; + case Fragment::WRAP_S: return subs[0].ss; case Fragment::WRAP_C: return { - subs[0]->ss.Sat() + SatInfo::OP_CHECKSIG(), - subs[0]->ss.Dsat() + SatInfo::OP_CHECKSIG() + subs[0].ss.Sat() + SatInfo::OP_CHECKSIG(), + subs[0].ss.Dsat() + SatInfo::OP_CHECKSIG() }; case Fragment::WRAP_D: return { - SatInfo::OP_DUP() + SatInfo::If() + subs[0]->ss.Sat(), + SatInfo::OP_DUP() + SatInfo::If() + subs[0].ss.Sat(), SatInfo::OP_DUP() + SatInfo::If() }; - case Fragment::WRAP_V: return {subs[0]->ss.Sat() + SatInfo::OP_VERIFY(), {}}; + case Fragment::WRAP_V: return {subs[0].ss.Sat() + SatInfo::OP_VERIFY(), {}}; case Fragment::WRAP_J: return { - SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0]->ss.Sat(), + SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0].ss.Sat(), SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() }; case Fragment::THRESH: { @@ -1163,13 +1168,13 @@ private: // element i we need to add OP_ADD (if i>0). auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty(); // Construct a variable that will become the next sats, starting with index 0. - auto next_sats = Vector(sats[0] + subs[i]->ss.Dsat() + add); + auto next_sats = Vector(sats[0] + subs[i].ss.Dsat() + add); // Then loop to construct next_sats[1..i]. for (size_t j = 1; j < sats.size(); ++j) { - next_sats.push_back(((sats[j] + subs[i]->ss.Dsat()) | (sats[j - 1] + subs[i]->ss.Sat())) + add); + next_sats.push_back(((sats[j] + subs[i].ss.Dsat()) | (sats[j - 1] + subs[i].ss.Sat())) + add); } // Finally construct next_sats[i+1]. - next_sats.push_back(sats[sats.size() - 1] + subs[i]->ss.Sat() + add); + next_sats.push_back(sats[sats.size() - 1] + subs[i].ss.Sat() + add); // Switch over. sats = std::move(next_sats); } @@ -1199,35 +1204,35 @@ private: case Fragment::HASH256: case Fragment::HASH160: return {1 + 32, {}}; case Fragment::ANDOR: { - const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)}; - const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat}; + const auto sat{(subs[0].ws.sat + subs[1].ws.sat) | (subs[0].ws.dsat + subs[2].ws.sat)}; + const auto dsat{subs[0].ws.dsat + subs[2].ws.dsat}; return {sat, dsat}; } - case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}}; - case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat}; + case Fragment::AND_V: return {subs[0].ws.sat + subs[1].ws.sat, {}}; + case Fragment::AND_B: return {subs[0].ws.sat + subs[1].ws.sat, subs[0].ws.dsat + subs[1].ws.dsat}; case Fragment::OR_B: { - const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)}; - const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat}; + const auto sat{(subs[0].ws.dsat + subs[1].ws.sat) | (subs[0].ws.sat + subs[1].ws.dsat)}; + const auto dsat{subs[0].ws.dsat + subs[1].ws.dsat}; return {sat, dsat}; } - case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}}; - case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat}; - case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)}; + case Fragment::OR_C: return {subs[0].ws.sat | (subs[0].ws.dsat + subs[1].ws.sat), {}}; + case Fragment::OR_D: return {subs[0].ws.sat | (subs[0].ws.dsat + subs[1].ws.sat), subs[0].ws.dsat + subs[1].ws.dsat}; + case Fragment::OR_I: return {(subs[0].ws.sat + 1 + 1) | (subs[1].ws.sat + 1), (subs[0].ws.dsat + 1 + 1) | (subs[1].ws.dsat + 1)}; case Fragment::MULTI: return {k * sig_size + 1, k + 1}; case Fragment::MULTI_A: return {k * sig_size + static_cast(keys.size()) - k, static_cast(keys.size())}; case Fragment::WRAP_A: case Fragment::WRAP_N: case Fragment::WRAP_S: - case Fragment::WRAP_C: return subs[0]->ws; - case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1}; - case Fragment::WRAP_V: return {subs[0]->ws.sat, {}}; - case Fragment::WRAP_J: return {subs[0]->ws.sat, 1}; + case Fragment::WRAP_C: return subs[0].ws; + case Fragment::WRAP_D: return {1 + 1 + subs[0].ws.sat, 1}; + case Fragment::WRAP_V: return {subs[0].ws.sat, {}}; + case Fragment::WRAP_J: return {subs[0].ws.sat, 1}; case Fragment::THRESH: { auto sats = Vector(internal::MaxInt(0)); for (const auto& sub : subs) { - auto next_sats = Vector(sats[0] + sub->ws.dsat); - for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat)); - next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat); + auto next_sats = Vector(sats[0] + sub.ws.dsat); + for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub.ws.dsat) | (sats[j - 1] + sub.ws.sat)); + next_sats.push_back(sats[sats.size() - 1] + sub.ws.sat); sats = std::move(next_sats); } assert(k < sats.size()); @@ -1741,6 +1746,10 @@ public: // Delete copy constructor and assignment operator, use Clone() instead Node(const Node&) = delete; Node& operator=(const Node&) = delete; + + // subs is movable, circumventing recursion, so these are permitted. + Node(Node&&) noexcept = default; + Node& operator=(Node&&) noexcept = default; }; namespace internal { @@ -1844,8 +1853,8 @@ void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector -inline NodeRef Parse(std::span in, const Ctx& ctx) +template +inline std::optional> Parse(std::span in, const Ctx& ctx) { using namespace script; @@ -2125,7 +2134,7 @@ inline NodeRef Parse(std::span in, const Ctx& ctx) break; } case ParseContext::VERIFY: { - script_size += (constructed.back()->GetType() << "x"_mst); + script_size += (constructed.back().GetType() << "x"_mst); constructed.back() = MakeNodeRef(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back()))); break; } @@ -2214,10 +2223,10 @@ inline NodeRef Parse(std::span in, const Ctx& ctx) // Sanity checks on the produced miniscript assert(constructed.size() >= 1); CHECK_NONFATAL(constructed.size() == 1); - assert(constructed[0]->ScriptSize() == script_size); + assert(constructed[0].ScriptSize() == script_size); if (in.size() > 0) return {}; - NodeRef tl_node = std::move(constructed.front()); - tl_node->DuplicateKeyCheck(ctx); + Node tl_node{std::move(constructed.front())}; + tl_node.DuplicateKeyCheck(ctx); return tl_node; } @@ -2303,8 +2312,8 @@ enum class DecodeContext { }; //! Parse a miniscript from a bitcoin script -template -inline NodeRef DecodeScript(I& in, I last, const Ctx& ctx) +template +inline std::optional> DecodeScript(I& in, I last, const Ctx& ctx) { // The two integers are used to hold state for thresh() std::vector> to_parse; @@ -2316,7 +2325,7 @@ inline NodeRef DecodeScript(I& in, I last, const Ctx& ctx) while (!to_parse.empty()) { // Exit early if the Miniscript is not going to be valid. - if (!constructed.empty() && !constructed.back()->IsValid()) return {}; + if (!constructed.empty() && !constructed.back().IsValid()) return {}; // Get the current context we are decoding within auto [cur_context, n, k] = to_parse.back(); @@ -2682,23 +2691,25 @@ inline NodeRef DecodeScript(I& in, I last, const Ctx& ctx) } } if (constructed.size() != 1) return {}; - NodeRef tl_node = std::move(constructed.front()); - tl_node->DuplicateKeyCheck(ctx); + Node tl_node{std::move(constructed.front())}; + tl_node.DuplicateKeyCheck(ctx); // Note that due to how ComputeType works (only assign the type to the node if the // subs' types are valid) this would fail if any node of tree is badly typed. - if (!tl_node->IsValidTopLevel()) return {}; + if (!tl_node.IsValidTopLevel()) return {}; return tl_node; } } // namespace internal -template -inline NodeRef FromString(const std::string& str, const Ctx& ctx) { +template +inline std::optional> FromString(const std::string& str, const Ctx& ctx) +{ return internal::Parse(str, ctx); } -template -inline NodeRef FromScript(const CScript& script, const Ctx& ctx) { +template +inline std::optional> FromScript(const CScript& script, const Ctx& ctx) +{ using namespace internal; // A too large Script is necessarily invalid, don't bother parsing it. if (script.size() > MaxScriptSize(ctx.MsContext())) return {}; diff --git a/src/test/fuzz/miniscript.cpp b/src/test/fuzz/miniscript.cpp index dc1b3c987d3..a122e8f368e 100644 --- a/src/test/fuzz/miniscript.cpp +++ b/src/test/fuzz/miniscript.cpp @@ -15,6 +15,7 @@ #include #include +#include namespace { @@ -852,12 +853,13 @@ std::optional ConsumeNodeSmart(MsCtx script_ctx, FuzzedDataProvider& p * Generate a Miniscript node based on the fuzzer's input. * * - ConsumeNode is a function object taking a Type, and returning an std::optional. - * - root_type is the required type properties of the constructed NodeRef. + * - root_type is the required type properties of the constructed Node. * - strict_valid sets whether ConsumeNode is expected to guarantee a NodeInfo that results in - * a NodeRef whose Type() matches the type fed to ConsumeNode. + * a Node whose Type() matches the type fed to ConsumeNode. */ -template -NodeRef GenNode(MsCtx script_ctx, F ConsumeNode, Type root_type, bool strict_valid = false) { +template +std::optional GenNode(MsCtx script_ctx, F ConsumeNode, Type root_type, bool strict_valid = false) +{ /** A stack of miniscript Nodes being built up. */ std::vector stack; /** The queue of instructions. */ @@ -972,26 +974,26 @@ NodeRef GenNode(MsCtx script_ctx, F ConsumeNode, Type root_type, bool strict_val sub.push_back(std::move(*(stack.end() - info.subtypes.size() + i))); } stack.erase(stack.end() - info.subtypes.size(), stack.end()); - // Construct new NodeRef. - NodeRef node; - if (info.keys.empty()) { - node = MakeNodeRef(script_ctx, info.fragment, std::move(sub), std::move(info.hash), info.k); - } else { + // Construct new Node. + Node node{[&] { + if (info.keys.empty()) { + return Node{miniscript::internal::NoDupCheck{}, script_ctx, info.fragment, std::move(sub), std::move(info.hash), info.k}; + } assert(sub.empty()); assert(info.hash.empty()); - node = MakeNodeRef(script_ctx, info.fragment, std::move(info.keys), info.k); - } + return Node{miniscript::internal::NoDupCheck{}, script_ctx, info.fragment, std::move(info.keys), info.k}; + }()}; // Verify acceptability. - if (!node || (node->GetType() & "KVWB"_mst) == ""_mst) { + if ((node.GetType() & "KVWB"_mst) == ""_mst) { assert(!strict_valid); return {}; } if (!(type_needed == ""_mst)) { - assert(node->GetType() << type_needed); + assert(node.GetType() << type_needed); } - if (!node->IsValid()) return {}; + if (!node.IsValid()) return {}; // Update resource predictions. - if (node->Fragment() == Fragment::WRAP_V && node->Subs()[0]->GetType() << "x"_mst) { + if (node.Fragment() == Fragment::WRAP_V && node.Subs()[0].GetType() << "x"_mst) { ops += 1; scriptsize += 1; } @@ -1005,9 +1007,9 @@ NodeRef GenNode(MsCtx script_ctx, F ConsumeNode, Type root_type, bool strict_val } } assert(stack.size() == 1); - assert(stack[0]->GetStaticOps() == ops); - assert(stack[0]->ScriptSize() == scriptsize); - stack[0]->DuplicateKeyCheck(KEY_COMP); + assert(stack[0].GetStaticOps() == ops); + assert(stack[0].ScriptSize() == scriptsize); + stack[0].DuplicateKeyCheck(KEY_COMP); return std::move(stack[0]); } @@ -1032,7 +1034,7 @@ void SatisfactionToWitness(MsCtx ctx, CScriptWitness& witness, const CScript& sc } /** Perform various applicable tests on a miniscript Node. */ -void TestNode(const MsCtx script_ctx, const NodeRef& node, FuzzedDataProvider& provider) +void TestNode(const MsCtx script_ctx, const std::optional& node, FuzzedDataProvider& provider) { if (!node) return; diff --git a/src/test/miniscript_tests.cpp b/src/test/miniscript_tests.cpp index 9b414ca9a4f..a5f9a21d033 100644 --- a/src/test/miniscript_tests.cpp +++ b/src/test/miniscript_tests.cpp @@ -297,11 +297,11 @@ using miniscript::operator""_mst; using Node = miniscript::Node; /** Compute all challenges (pubkeys, hashes, timelocks) that occur in a given Miniscript. */ -std::set FindChallenges(const Node* root) +std::set FindChallenges(const Node& root) { std::set chal; - for (std::vector stack{root}; !stack.empty();) { + for (std::vector stack{&root}; !stack.empty();) { const auto* ref{stack.back()}; stack.pop_back(); @@ -318,7 +318,7 @@ std::set FindChallenges(const Node* root) default: break; } for (const auto& sub : ref->Subs()) { - stack.push_back(sub.get()); + stack.push_back(&sub); } } return chal; @@ -347,8 +347,8 @@ void SatisfactionToWitness(miniscript::MiniscriptContext ctx, CScriptWitness& wi struct MiniScriptTest : BasicTestingSetup { /** Run random satisfaction tests. */ void TestSatisfy(const KeyConverter& converter, const std::string& testcase, const NodeRef& node) { - auto script = node->ToScript(converter); - const auto challenges{FindChallenges(node.get())}; // Find all challenges in the generated miniscript. + auto script = node.ToScript(converter); + const auto challenges{FindChallenges(node)}; // Find all challenges in the generated miniscript. std::vector challist(challenges.begin(), challenges.end()); for (int iter = 0; iter < 3; ++iter) { std::shuffle(challist.begin(), challist.end(), m_rng); @@ -365,12 +365,12 @@ void TestSatisfy(const KeyConverter& converter, const std::string& testcase, con // Run malleable satisfaction algorithm. CScriptWitness witness_mal; - const bool mal_success = node->Satisfy(satisfier, witness_mal.stack, false) == miniscript::Availability::YES; + const bool mal_success = node.Satisfy(satisfier, witness_mal.stack, false) == miniscript::Availability::YES; SatisfactionToWitness(converter.MsContext(), witness_mal, script, builder); // Run non-malleable satisfaction algorithm. CScriptWitness witness_nonmal; - const bool nonmal_success = node->Satisfy(satisfier, witness_nonmal.stack, true) == miniscript::Availability::YES; + const bool nonmal_success = node.Satisfy(satisfier, witness_nonmal.stack, true) == miniscript::Availability::YES; // Compute witness size (excluding script push, control block, and witness count encoding). const uint64_t wit_size{GetSerializeSize(witness_nonmal.stack) - GetSizeOfCompactSize(witness_nonmal.stack.size())}; SatisfactionToWitness(converter.MsContext(), witness_nonmal, script, builder); @@ -379,23 +379,23 @@ void TestSatisfy(const KeyConverter& converter, const std::string& testcase, con // Non-malleable satisfactions are bounded by the satisfaction size plus: // - For P2WSH spends, the witness script // - For Tapscript spends, both the witness script and the control block - const size_t max_stack_size{*node->GetStackSize() + 1 + miniscript::IsTapscript(converter.MsContext())}; + const size_t max_stack_size{*node.GetStackSize() + 1 + miniscript::IsTapscript(converter.MsContext())}; BOOST_CHECK(witness_nonmal.stack.size() <= max_stack_size); // If a non-malleable satisfaction exists, the malleable one must also exist, and be identical to it. BOOST_CHECK(mal_success); BOOST_CHECK(witness_nonmal.stack == witness_mal.stack); - assert(wit_size <= *node->GetWitnessSize()); + assert(wit_size <= *node.GetWitnessSize()); // Test non-malleable satisfaction. ScriptError serror; bool res = VerifyScript(CScript(), script_pubkey, &witness_nonmal, STANDARD_SCRIPT_VERIFY_FLAGS, checker, &serror); // Non-malleable satisfactions are guaranteed to be valid if ValidSatisfactions(). - if (node->ValidSatisfactions()) BOOST_CHECK(res); + if (node.ValidSatisfactions()) BOOST_CHECK(res); // More detailed: non-malleable satisfactions must be valid, or could fail with ops count error (if CheckOpsLimit failed), // or with a stack size error (if CheckStackSize check fails). BOOST_CHECK(res || - (!node->CheckOpsLimit() && serror == ScriptError::SCRIPT_ERR_OP_COUNT) || - (!node->CheckStackSize() && serror == ScriptError::SCRIPT_ERR_STACK_SIZE)); + (!node.CheckOpsLimit() && serror == ScriptError::SCRIPT_ERR_OP_COUNT) || + (!node.CheckStackSize() && serror == ScriptError::SCRIPT_ERR_STACK_SIZE)); } if (mal_success && (!nonmal_success || witness_mal.stack != witness_nonmal.stack)) { @@ -407,7 +407,7 @@ void TestSatisfy(const KeyConverter& converter, const std::string& testcase, con BOOST_CHECK(res || serror == ScriptError::SCRIPT_ERR_OP_COUNT || serror == ScriptError::SCRIPT_ERR_STACK_SIZE); } - if (node->IsSane()) { + if (node.IsSane()) { // For sane nodes, the two algorithms behave identically. BOOST_CHECK_EQUAL(mal_success, nonmal_success); } @@ -417,7 +417,7 @@ void TestSatisfy(const KeyConverter& converter, const std::string& testcase, con // For nonmalleable solutions this is only true if the added condition is PK; // for other conditions, adding one may make an valid satisfaction become malleable. If the script // is sane, this cannot happen however. - if (node->IsSane() || add < 0 || challist[add].first == ChallengeType::PK) { + if (node.IsSane() || add < 0 || challist[add].first == ChallengeType::PK) { BOOST_CHECK(nonmal_success >= prev_nonmal_success); } // Remember results for the next added challenge. @@ -425,11 +425,11 @@ void TestSatisfy(const KeyConverter& converter, const std::string& testcase, con prev_nonmal_success = nonmal_success; } - bool satisfiable = node->IsSatisfiable([](const Node&) { return true; }); + bool satisfiable = node.IsSatisfiable([](const Node&) { return true; }); // If the miniscript was satisfiable at all, a satisfaction must be found after all conditions are added. BOOST_CHECK_EQUAL(prev_mal_success, satisfiable); // If the miniscript is sane and satisfiable, a nonmalleable satisfaction must eventually be found. - if (node->IsSane()) BOOST_CHECK_EQUAL(prev_nonmal_success, satisfiable); + if (node.IsSane()) BOOST_CHECK_EQUAL(prev_nonmal_success, satisfiable); } } @@ -472,7 +472,7 @@ void Test(const std::string& ms, const std::string& hexscript, int mode, const K if (stacklimit != -1) BOOST_CHECK_MESSAGE((int)*node->GetStackSize() == stacklimit, "Stack limit mismatch: " << ms << " (" << *node->GetStackSize() << " vs " << stacklimit << ")"); if (max_wit_size) BOOST_CHECK_MESSAGE(*node->GetWitnessSize() == *max_wit_size, "Witness size limit mismatch: " << ms << " (" << *node->GetWitnessSize() << " vs " << *max_wit_size << ")"); if (stack_exec) BOOST_CHECK_MESSAGE(*node->GetExecStackSize() == *stack_exec, "Stack execution limit mismatch: " << ms << " (" << *node->GetExecStackSize() << " vs " << *stack_exec << ")"); - TestSatisfy(converter, ms, node); + TestSatisfy(converter, ms, *node); } } @@ -600,11 +600,11 @@ BOOST_AUTO_TEST_CASE(fixed_tests) constexpr KeyConverter tap_converter{miniscript::MiniscriptContext::TAPSCRIPT}; constexpr KeyConverter wsh_converter{miniscript::MiniscriptContext::P2WSH}; const auto no_pubkey{"ac519c"_hex_u8}; - BOOST_CHECK(miniscript::FromScript({no_pubkey.begin(), no_pubkey.end()}, tap_converter) == nullptr); + BOOST_CHECK(miniscript::FromScript({no_pubkey.begin(), no_pubkey.end()}, tap_converter) == std::nullopt); const auto incomplete_multi_a{"ba20c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5ba519c"_hex_u8}; - BOOST_CHECK(miniscript::FromScript({incomplete_multi_a.begin(), incomplete_multi_a.end()}, tap_converter) == nullptr); + BOOST_CHECK(miniscript::FromScript({incomplete_multi_a.begin(), incomplete_multi_a.end()}, tap_converter) == std::nullopt); const auto incomplete_multi_a_2{"ac2079be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798ac20c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5ba519c"_hex_u8}; - BOOST_CHECK(miniscript::FromScript({incomplete_multi_a_2.begin(), incomplete_multi_a_2.end()}, tap_converter) == nullptr); + BOOST_CHECK(miniscript::FromScript({incomplete_multi_a_2.begin(), incomplete_multi_a_2.end()}, tap_converter) == std::nullopt); // Can use multi_a under Tapscript but not P2WSH. Test("and_v(v:multi_a(2,03d01115d548e7561b15c38f004d734633687cf4419620095bc5b0f47070afe85a,025601570cb47f238d2b0286db4a990fa0f3ba28d1a319f5e7cf55c2a2444da7cc),after(1231488000))", "?", "20d01115d548e7561b15c38f004d734633687cf4419620095bc5b0f47070afe85aac205601570cb47f238d2b0286db4a990fa0f3ba28d1a319f5e7cf55c2a2444da7ccba529d0400046749b1", TESTMODE_VALID | TESTMODE_NONMAL | TESTMODE_NEEDSIG | TESTMODE_P2WSH_INVALID, 4, 2, {}, {}, 3); // Can use more than 20 keys in a multi_a. @@ -650,13 +650,13 @@ BOOST_AUTO_TEST_CASE(fixed_tests) // A Script with a non minimal push is invalid constexpr auto nonminpush{"0000210232780000feff00ffffffffffff21ff005f00ae21ae00000000060602060406564c2102320000060900fe00005f00ae21ae00100000060606060606000000000000000000000000000000000000000000000000000000000000000000"_hex_u8}; const CScript nonminpush_script(nonminpush.begin(), nonminpush.end()); - BOOST_CHECK(miniscript::FromScript(nonminpush_script, wsh_converter) == nullptr); - BOOST_CHECK(miniscript::FromScript(nonminpush_script, tap_converter) == nullptr); + BOOST_CHECK(miniscript::FromScript(nonminpush_script, wsh_converter) == std::nullopt); + BOOST_CHECK(miniscript::FromScript(nonminpush_script, tap_converter) == std::nullopt); // A non-minimal VERIFY ( CHECKSIG VERIFY 1) constexpr auto nonminverify{"2103a0434d9e47f3c86235477c7b1ae6ae5d3442d49b1943c2b752a68e2a47e247c7ac6951"_hex_u8}; const CScript nonminverify_script(nonminverify.begin(), nonminverify.end()); - BOOST_CHECK(miniscript::FromScript(nonminverify_script, wsh_converter) == nullptr); - BOOST_CHECK(miniscript::FromScript(nonminverify_script, tap_converter) == nullptr); + BOOST_CHECK(miniscript::FromScript(nonminverify_script, wsh_converter) == std::nullopt); + BOOST_CHECK(miniscript::FromScript(nonminverify_script, tap_converter) == std::nullopt); // A threshold as large as the number of subs is valid. Test("thresh(2,c:pk_k(03d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65),altv:after(100))", "2103d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac6b6300670164b16951686c935287", "20d30199d74fb5a22d47b6e054e2f378cedacffcb89904a61d75d0dbd407143e65ac6b6300670164b16951686c935287", TESTMODE_VALID | TESTMODE_NEEDSIG | TESTMODE_NONMAL); // A threshold of 1 is valid.